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1 Techniques in Real Analysis

In this section, we describe some frequently used techniques in analysis and key theorems
that are useful. Most theorems we list below can be found in any standard textbook for measure
theory and functional analysis, but occasionally I will include some not-so-well-known theorems
or results that are useful or interesting (often both).

2 Inequalities

Holder’s inequality, Generalised Hölder’s inequality, Minkowski’s Inequality, Minkowski’s in-
tegral inequality, Hausdorff-Young Inequality, Chebyshev-Markov inequality, Jensen’s inequal-
ity, Convolution inequality, Parseval’s identity, Hardy’s inequality, Hardy-Littlewood weak es-
timate, Poincaré inequality, GNS inequality...

Theorem 1 (Hölder Inequality). Let f ∈ Lp and g ∈ Lq where p−1 + q−1 = 1. Then fg ∈ L1

and ||fg||1 ≤ ||f ||p||g||q.

Proof. Observe that |ab| ≤ p−1|a|p + q−1|b|q yields that ||fg||1 ≤ p−1||f ||pp + q−1||g||qq. Changing
f → λf and g → λ−1g, we obtain ||fg||1 ≤ p−1||f ||ppλp + q−1λ−q||g||qq. Minimizing the right side
with respect to λ gives the desired inequality.

There is an important aspect of the above proof that needs to be emphasized. We begin with
a weaker inequality and we observe that one side of the inequality has a symmetry/invariance
property. We exploit that invariance to obtain a stronger result. In this sense, we have a class
of inequality parametrized by λ ∈ (0,∞) and the Holder’s inequality is an extreme point in that
class. This also suggests a variational characterization of Holder’s inequality and we give that
below. The trick of symmetry-breaking will be discussed in more detail in the later sections.

Theorem 2. ||f ||p = sup {||fg||1 : ||g||q = 1} .

3 Some important results

Theorem 3 (Riesz representation theorem). Let H be a Hilbert space and ` : H → F be a
continuous linear functional on H. Then, there exists h ∈ H such that `(f) = 〈f, h〉 for every
f ∈ H.

1



Theorem 4 (Riesz separation lemma). Let H be a Banach space and let let E ⊆ H be a proper
closes subspace of H. Then, there exists x ∈ H such that ||x|| ≤ 1 and d(x,E) > 1/2.

An immediate consequence of Riesz’s separation lemma is the non-existence of Lebesgue
measure (translation invariant Borel regular measure) on infinite-dimensional Banach spaces. It
must be remarked that the lemma only excludes the possibility of translation invariant measures
that are (Radon) regular. Indeed, there are non-trivial counting measures on any vector space
that are translation invariant.

Riesz’s separation lemma highlights a crucial difference between finite and infinite-dimensional
spaces. The following lemma (due to F. Riesz?) highlights another such difference. Recall that
the closed unit ball in Rn is compact (Heine-Borel lemma). The following lemma essentially
says that this phenomenon occurs only in the finite-dimensional settings.

Theorem 5 (Riesz?). Let H be a Banach space and let B ⊆ H be the closed unit ball. B is
compact if and only if H is finite-dimensional.

Combined with Baire Category theorem an immediate corollary of the above result is that
infinite-dimensional normed spaces are not σ-compact. This theorem should be contrasted with
the Banach-Alaoglu theorem. Recall that any Banach space H has a natural weak-* topology
as well and the Banach-Alaoglu theorem states that the unit ball (in norm topology) is compact
in weak-* topology.

Theorem 6 (Borel-Cantelli Lemma). Let (Ω,F , µ) be a measure space. Suppose An ⊆ Ω are
measurable subsets such that

∑∞
n=1 µ(An) <∞, then µ(lim sup

n
An) = 0.

Proof. Since lim supAn =
⋂
ge1

⋃
k≥nAk, it follows that µ(lim supAn) ≤

∑
k≥n

µ(Ak).

Borel-Cantelli lemma is often stated for probability measure but it is clear from the proof
that it holds for any measure. However, there is a useful converse of the Borel-Cantelli lemma
that requires independence of An.

1 Borel-Cantelli lemma combined with some quantitative es-
timates obtained from Chebyshev/Markov type inequality is often used to upgrade convergence
in measure to almost sure convergence.

Theorem 7 (Scheffe lemma, 1947). 2 Let fn, f ∈ L1(µ) and fn → f almost surely. Then,
||fn − f ||1 → 0 if and only if ||fn||1 → ||f ||1.

Sheffe’s lemma has a very useful corollary in probability. Let fn dµ is a sequence of probabil-
ity measures. Suppose f ∈ L1(µ) and let fn → f pointwise, then fndµ→ fdµ in total-variation
norm. Sheffe’s lemma can be obtained from the following lemma that was proved by Frigyes
Riesz in 1928.

Theorem 8 (Riesz, 1928). Let p ≥ 1 and let fn, f ∈ Lp such that fn → f almost surely. If
lim ||fn||p = lim ||f ||p, then ||fn − f ||p → 0.3

The essence of the Riesz’s lemma is that it provides a characterization for almost sure
convergence to be an Lp convergence. In fact the proof of Riesz can be modified to obtain a
criterion for convergence in measure to be convergence in Lp. We leave this as a fun exercise.
An elegant proof of Riesz’s lemma due to Novinger (1975) follows by observing that 2p(|fn|p +
|f |p)− |fn− f |p ≥ 0 and using Fatou’s lemma. However, we will present here the original proof
of Riesz as a beautiful example of truncation argument.

1There is a version of the converse of general measure spaces but we will not state that here.
2This result was already present in a work of Riesz 20 year before Scheffe.
3The case p = 2 follows trivially by noting that ||fn − f ||22 = ||fn||2 + ||f ||22 − 2〈fn, f〉.

2



Proof of Riesz’s lamma. Define the following sequence of function

f∗n =

{
|fn|, |fn| ≤ |f |
|f | sgn(fn), |fn| > |f |

.

The sequence of function |f∗n| is dominated by |f | and |f∗n| → |f | almost surely. A simple
application of DCT gives lim ||f∗n||p = ||f ||p and ||fn−f ||p → 0. Now observe that ||fn−f∗n||p → 0
and therefore triangle’s inequality yields that ||fn − f ||p ≤ ||fn − f∗n||p + ||f∗n − f ||p → 0.

Theorem 9 (Weierstrass’s extreme value theorem). Let Ω be a compact set let f : Ω→ R be a
lower semi-continuous function. Then, f achieves minimum on Ω.

The proof is almost trivial and routine. But it is still instructive to include the proof here
for the simple method used in the proof is often useful in other situations.

Proof. Consider a sequence xn such that f(xn) → α := inf
x∈Ω

(f(x)). After passing to a sub-

sequence and using the compactness of Ω, we may assume that limxn = x ∈ Ω. By def-
inition we have f(x) ≥ α. On the other hand, by the lower semi-continuity of f, we have
α := lim(f(xn)) ≤ f(limxn) = f(x).

We’ll talk more about the technique involved in this proof in later sections.

• Riesz Lemma, Riesz’ theorem

• duality Lp − Lq, dual of `p spaces, dual of C(X), C0(X), Cb(X)

• completeness of `p, L
p, C(X), Bergman space, Hardy space etc...

• compactness theorems: Arzela-Ascoli, Banach-Alaoglu, Montel’s theorem, compactness in
Lp spaces, Helly’s selection, Prokhorov theorem etc.

• Extension/interpolation theorems: Hahn-Banach, Banach-Steinhaus, Riesz-Thorin, Marcinkewicz,
Stein’s interpolation

• Approximation/density theorems: Stone-Weierstrass theorem, Muntz-Sazs etc.

• Limit interchange theorems: DCT, MCT, Fatou’s lemma, Fubini-Tonelli etc.

• Misc: Lebesgue density theorem, Lebesgue differential theorem, Radon-Nikodym, Lusin,
Erogoff etc.

4 Examples and Counter-examples

Example 1 (Convergence in measure does not imply almost sure convergence). Let Ω = [0, 1]
and let fk,n = 1 on [k2−n, (k + 1)2−n] for 0 ≤ k ≤ 2n − 1 and 0 otherwise. The sequence fk,n
converges in measure but not almost surely. In fact, the sequence fk,n does not have a pointwise
limit for any x ∈ [0, 1].

Example 2 (Weak Lp does not imply Lp.). Recall that a function f is said to be weakly Lp,
denoted as f ∈ Lp,∞, if µ(|f | ≥ t) ≤ Ct−p for some constant C. In fact, Lp,∞ is a Banach space
with the norm ||f ||p,∞ := inf{C1/p : µ(|f | ≥ t) ≤ Ct−p}. These weak Lp spaces naturally arise in
Euclidean harmonic analysis, for instance Hardy-Littlewood maximal function of an integrable
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function is in L1,∞. It is easily seen from Chebyshev-Markov inequality that Lp ⊆ Lp,∞, but in
this example we show that the containment is strict.4

Let f(x) = |x|−1/p on R. Then f ∈ Lp,∞ because m(|f | ≥ t) = m(|x| < t−p) = t−p. But
f 6∈ Lp.5

5 Methods of Proof

5.1 Density or approximation argument

This is a technique which comes very often in measure theory. The typical application is
to prove a statement like ”property P holds for every object in class C”. For example, C can
be class of measurable functions, class of Borel subsets or class of continuous functions on a
compact set. The crucial thing is that the class C contains a class of simpler objects say C0 and
there is some kind of approximation theorem or density theorem that says that everything in C
can be generated from A. It is usually helpful in such situation to prove that property P holds
for A.

5.2 Method of appropriate objects

This method is closely related to the density/approximation argument. The typical appli-
cation is to prove a statement like ”property P holds for every object in class C”. Here we begin
by looking at the class C0 of all objects for which property P holds. The idea is to show that
C ⊆ C0. This is usually done in three steps: 1) show that C0 contains some subclass C0. 2) show
that C0 is ’closed’ under some set of operations. 3) finally some standard result would say that
if C0 must be at least as big as C. For example, consider the following problems:

1) Let f : Rn → Rn be a Lipschitz function. f(E) is measurable for every Borel set E

2) Proof of Fubini-Tonelli theorem

5.3 Proving almost sure convergence

5.4 Method of moments

5.5 Tensor power trick

5.6 Exploiting symmetry to strengthen inequalities

5.7 Truncation trick

4Question to self: Is there a Hölder inequality for weak Lp functions?
5Lp = Lp,∞ if and only if µ is finitely supported?
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Real Analysis 2019

Problem 1
Suppose that every f in a closed subspace M of L∞(−1, 1) is continuous in some neighbor-
hood of zero. Prove that there exists a fixed neighborhood of zero such that every f ∈ M
is continuous on that neighborhood.

Solution: If not, we can find a sequence of functions fn ∈Mn such that ||fn||∞ = 1 and fn has

a discontinuity at some xn and xn+1 < xn/2. Now consider the function

f :=
∑
n=0

fn
2n
.

Since M is closed, it follows that f ∈ M. But it is clear that f is not continuous in any
neighborhood of zero.

Problem 2
Let T : H1 → H2 be a linear operator such that 〈Tx, 〉H2 = 〈x, x〉H1 for all x ∈ H1. Then,
show that 〈Tx, Ty〉H2 = 〈x, y〉H1 for all x, y ∈ H1.

Solution:

〈T (x+ y), T (x+ y)〉 = 〈x+ y, x+ y〉.

Expanding and rearranging both sides yields 〈Tx, Ty〉 = 〈x, y〉. Note that the conclusion also
holds if H1 and H2 are Hilbert spaces over C.

Problem 3

Solution: The easiest way to do this is to show that {ν : supp(ν)∩U = ∅} is a closed set. To this

end, let νn be a sequence of probability measures such that supp(νn) ⊆ U c converging (weak-∗)
to some probability measure ν0. We need to show that supp(ν0) ⊆ U c. To do this, we observe
that for any continuous function f with support contained inside U c we have 0

∫
fdνn →

∫
fdν0.

This shows that supp(ν0) ∩ U = ∅.

Problem 4
Let A and B be bounded measurable subset of R with positive Lebesgue measure. Let χA
and χB be the characteristic function of A and B respectively.

a) Show that the convolution χA and χB are continuous functions and
∫
R χA ? χB > 0.

b) Show that A+B contains a non-empty open interval.

Solution: Part (a) follows from a more general result that can be proved equally easily. Let

f ∈ L∞ and g ∈ L1 then f ? g is continuous. To see this note that

|f ? g(x)− f ? g(y)| ≤
∫
|f(z)|g(x− z)− g(y − z)|dz

≤ ||f ||∞
∫
|g(x− z)− g(y − z)|dz → 0,
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as |z− y| → 0. It should be pointed out that
∫
|g(x− z)− g(y− z)|dz → 0 is not entirely trivial.

The easiest way to prove it is to first prove the claim for compactly supported continuous
function (which is fairly easy) and then use a density argument.

For part (b), we just note that∫
R
χA ? χB(x)dx =

∫
R

∫
R
χA(z)χB(x− z)dzdx

= µ(B)µ(A) > 0,

where we used Tonelli’s theorem to integrate with respect to x first. Since we know χA ? χB
is continuous and non-negative, it follows that it must be positive at some point and hence
positive on some open set U . We now observe that χA ? χB = 0 outside A + B. Therefore
U ⊆ A+B.

Problem 5

Solution: Triangle inequality for norms shows that gN converges in Lp. Suppose gN → g in Lp.

Convergence in measure is now a consequence of Chebyshev-Markov inequality,

µ{|gn − g| > ε} ≤ ||gn − g||p
ε

→ 0.

Problem 6

Solution:

a) Let f ∈ Lp(Rn) and let x, y ∈ Ω. Note that

|Kf(x)−Kf(y)| ≤
∫
|k(x, s)− k(y, s)||f(s)| ds

≤ ||k(x, ·)− k(y, ·)||q||f ||p,

where the last inequality follows from Hölder’s inequality. From the assumption, we have
||k(x, · · · ) − k(y, · · · )||q → 0 as x → y. Therefore, we obtain |Kf(x) − Kf(y)| → 0 as
x→ y.

b) Let B be be the closed unit ball in Lp(Rn). Since we know that the image of K is contained
in C(Ω), it suffices to show that K(B) satisies the hypothesis of Arzéla-Ascoli theorem.
To this end, we observe that if ||f ||p ≤ 1, then from previous observation it follows that

|Kf(x)−Kf(y)| ≤ ||k(x, ·)− k(y, ·)||q.

And, therefore {Kf : f ∈ B} is equicontinuous. Also, note that s→ ||k(s, ·)||q is continu-
ous from Ω to R. Since Ω is compact, it follows that sup{||k(s, · · · )||q : s ∈ Ω} ≤M <∞.
In particular, by Hölder’s inequality we obtain

||Kf ||∞ ≤M,

for every f ∈ B. The conclusion now follows from Arzela-Ascoli theorem.

6



Problem 7

Solution: Standard Exercise.

Problem 8

Solution:

a) Straightforward calculation shows that

||fn||pp = np
n−1∑
k=0

∣∣∣∣∣
∫ k+1/n

k/n
f(x)dx

∣∣∣∣∣
p

≤
n∑
k=1

∫ k+1/n

k/n
|f(x)|p dx = ||f ||pP ,

where the inequality in the last line follows from the Jensen’s inequality.

b) Let ε > 0 be given. Fix n large so that |f(x) − f(y)| ≤ ε whenever |x − y| ≤ 1/n. For
x ∈ [k/n, k + 1/n], we have

|fn(x)− f(x)| ≤ n
∫ k+1/n

k/n
|f(y)− f(x)|dy

≤ ε.

It follows that fn → f uniformly.

c) First observe that b) implies that fn → f in Lp if f is continuous. Now let h ∈ Lp and let
ε > 0 be given. Let g be continuous such that ||h− g||p < ε/3 and let n be large so that
||g − gn||p ≤ ε/3. Observe that

||h− hn||p ≤ ||h− g||p + ||g − gn||p + ||gn − hn||p.

Finally observe that (gn − hn) = (g − h)n and therefore from a) and b) above we obtain
that ||h− hn||p ≤ ε.

7



Real Analysis 2018

Problem 1

Solution:

Problem 2

Solution: Let B(x, r) be a ball of radius r centered at x. It follows that f(B(x, r)) ⊆ B(f(x), Lr).

In other words, we obtain |f(B(x, r))| ≤ Ln|B(x, r)|. It follows that |f(A)| ≤ Ln|A| for any A
contained in the algebra generated by open balls. The conclusion now follows from the Dynkin’s
theorem or from the regularity of Lebesgue measure. Need to add the proof of measurability of
f(A).

Problem 3

Solution:

Problem 4

Solution:

Problem 5

Solution:

Problem 6

Solution:

Problem 7

Solution:

Problem 8
Let A be a closed linear operator on a Hilbert space H.

(a) Show that A∗ is bounded linear operator and is defined on all of H.

(b) Show that for every a, b ∈ H, the system of equations

x+A∗y = a

Ax− y = b

has a unique solution x, y ∈ H.
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Solution:

a) We first show that the domain of A∗ is all of H. To this end, fix y ∈ H and note that
Λy : H → C defined by Λy(x) = 〈Ax, y〉 is a bounded linear functional. It follows from
Riesz representation theorem that there exists z ∈ H such that Λy(x) = 〈x, z〉. This proves
that y is in the domain of A∗. Since y was arbitrary, our claim follows. We now show that
A∗ is bounded. To this end, let y ∈ H such that ||y|| ≤ 1. Observe that

||A∗y|| := sup
x:||x||≤1

|〈x,A∗y〉| = sup
x:||x||≤1

|〈Ax, y〉|

≤ sup
x:||x||≤1

||Ax||

≤ ||A||.

It follows that supy:||y||≤1 ||A∗y|| ≤ ||A||. That is, A∗ is bounded and its norm is bounded
by ||A||.

(b) First of all observe that B := I + AA∗ or B := I + A∗A are invertible. To see this note
that ‖Bx‖2 = ‖x‖2 + ‖A∗x‖2 + ‖AA∗x‖2. Therefore, B is injective (Bx = 0 =⇒ x = 0).
We now show that B has a closed range and hence it must be invertible. To see that B
has a closed range let yn = Bxn be a cauchy sequence with imit y ∈ H. We need to show
that y ∈ Range(B). To this, end note that ‖xn−xm‖ ≤ ‖B(xn−xm)‖ ≤ ‖yn−ym‖. That
is, xn is also Cauchy and hence xn → x ∈ H, by continuity of B it follows that Bx = y.
Onc we know that I + AA∗ is invertible, it is easy to see that the solution to the above
system of equations is given by y = B−1(Aa− b) and x = (I +A∗A)−1(a+A∗b).
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Real Analysis 2017

Problem 1

Solution: Standard exercise in integration by parts and induction.

Problem 2

Solution: Define L(x) = lim〈x, yn〉. It is clear that L : H → C is linear. It follows from Banach-

Steinhaus theorem that L is bounded and hence continuous. It follows from Riesz representation
theorem that L(x) = 〈x, y〉 for some y ∈ H.

Problem 3

Solution: Assume f is continuous. Let (xn, f(xn)) ∈ G(f) be a sequence that converges to

(x, y) ∈ X × Y. It follows from the continuity of f that y = f(x). Therefore, (x, y) ∈ G(f). In
other words G(f) is closed, and being a subset of compact set X × f(X) it is compact.

Assume that G(f) is compact. Let xn → x ∈ X. We now show that f(xn) → f(x). If not,
then after passing to a subseuquence we can assume that |f(xn)− f(x)|ε for all n. Consider the
sequence (xn, f(xn)). Since G(f) is compact, it follows that there is a subsequence of (xn, f(xn))
that converges to (x, f(x)) but this contradicts that |f(xn)− f(x)| > ε for all n.

Problem 4

Solution: After translation, we may assume f ≡ 0. By scaling it suffices to show that the set

B = {g : ||g|| ≤ 1} is not compact. To this end, consider the family of functions fk,n = sin(2nπx)
if x ∈ [k2−n, (k + 1)2−n] and 0 otherwise. It is clear that fn,k ∈ B but it has no convergent
subsequence because ||fn,k − fm,j || = 1 for all (n, k) 6= (m, j). This completes the proof of a).

For (b), we first note that it follows from part a) that a compact set K ∈ C[0, 1] has empty
interior. It follows from the Baire’s category theorem that

⋃
Kn has non-empty interior for any

countable collection of compact sets Kn, in particular it can’t be C[0, 1].

Problem 5

Solution: Standard Exercise.

Problem 6

Solution: It follows from the duality of L1 that ha(x) := f(x) − f(x + a) is equal to 0 almost

everywhere for every a. In particular, we have

1

|B(ε)|

∫
B(0,ε)

f(x)dx =
1

|B(ε)|

∫
B(a,ε)

f(x)dx.

From Lebesgue differentiation theorem it follows that f(x) = c almost everywhere.
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Problem 7

Solution: For every r ∈ (0, 1) let αr be the sequence obtained from the binary expansion of r.

Clearly |αr − αs| = δr,s and |αr| = 1. Therefore, `∞ is not separable.

Problem 8

Solution: Repeatedly using the inequality for f(t) and using the fact that f(t) ≥ 0, we obtain

f(t) ≤ a

(
1 +

n∑
i=1

bktk

k!
+

∫ t

xn

. . .

∫ x1

0
f(x)dx

n∏
i=1

dxi

)
.

Let |f(x)| ≤M(t) on [0, t] then∫ t

xk

. . .

∫ x1

0
f(x)dx

k∏
i=1

dxi ≤M(t)
tn

n!
→ 0,

as n→∞. It follows that
f(t) ≤ aebt.
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Real Analysis 2016

Problem 1

Solution: After passing through a subsequence, we may assume that fj → f almost surely and

in L1. Therefore, |fj |p → |f |p almost surely. Fatou’s lemma now gives the part a). (It should
also be noted that Fatou’s lemma uses a weaker assumption that is given in the problem. In
particular, it suffices to have lim inf

∫
|fn|p <∞.)

To see that part b) is false consider the following counter-example. Let p > 1 be fixed. Let
fk,n = n1/p on [k/n, (k + 1)/n] and 0 otherwise. Note that

∫
|fn,k|p = 1 and fk,n → 0 in L1

because
∫
|fn,k| = n1/p−1 → 0. Clearly fk,n does not converge in Lp.

Problem 2

Solution: Let B = {f ∈ Lp : ||f ||p ≤ 1} be the unit ball. We need to show that T (B) is compact

in C[0, 1]. If f ∈ B then
(Tf)(x) ≤ x1−1/p||f ||p ≤ 1,

where the first inequality follows from Hólder’s inequality. Similarly,

|Tf(x)− Tf(y)| ≤ |y − x|1−1/p||f ||p ≤ |y − x|1−1/p.

It follows from Arzela-Ascoli theorem that T (B) is compact in C[0, 1]. Therefore, T is a compact
operator.

To see that the conclusion fails when p = 1, take fn = nxn−1 ∈ L1[0, 1]. It is clear that
||fn||1 = 1. Now notice that (Tfn)(x) = xn. Any subsequence of xn does not converge in
C[0, 1].

Problem 3

Solution: For a) take (ej) to be any orthonormal basis for L2(R). It is clear that ej → 0 weakly,

but ||ej − 0||2 = 1.
Part b) is a simple exercise with inner products. Expanding the ||fj − f ||22 we obtain

||fj − f ||22 = ||fj ||2 + ||f ||22 − 2〈fj , f〉.

Since fj → f weakly, it follows that 〈fj , f〉 → 〈f, f〉 = ||f ||2. The condition lim ||fj ||22 = ||f ||22
now gives the conclusion.

Problem 4
Let f be real valued Borel measurable on [0, 1]. Show that there exists a sequence of
polynomials Pk such that

lim
k→∞

Pk(x) = f(x) pointwise almost every x ∈ [0, 1].

Solution: Let f be Borel measureable. There exists a sequence of continuous function gn such

that gn → f almost surely. By Weierstrass theorem we know that the polynomials are dense in
C[0, 1]. Let Pk be a sequence of polynomials such that ||gk −Pk||∞ ≤ 1

k . It follows that Pk → f
almost everywhere.
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Problem 5
Let `2(N)

Problem 6
Suppose E ⊆ R be measurable subset of strictly positive measure. Show that there exists
a δ0 > 0 such that µ(E ∩ (E + δ)) > 0 for all 0 < δ < δ0.

Solution: This is easy if E is an open interval. Let E = (a, b), then µ(E ∩ E + δ) > 0 for all

δ < (b− a).
If E is an arbitrary set of positive measure. We can find an open interval I such that

µ(E ∩ I) ≥ 9/10µ(I) > 0. Now choose δ0 such that µ(I ∩ I + δ) > 9/10µ(I) for all δ ≤ δ0. We
now note that

µ(E ∩ E + δ) ≥ µ(I ∩ (I + δ))− 2µ(I \ E)

= 7/10µ(I) > 0.

Problem 7

Solution:

Problem 8

Solution:

a) This is obvious. Since ‖Snv‖ ≤ 1
n

∑n−1
i=0 ‖U iv‖ ≤

1
n

∑n−1
i=0 ‖v‖ = ‖v‖. Since v is arbitrary,

it proves the claim.

b) This is also obvious. If Uv = v then U iv = v for all i ≥ 0 by induction. It follows that
Snv = 1

n

∑n−1
i=0 U

iv = 1
n

∑n−1
i=0 v = v.

c) Note that

Snw =
1

n

n−1∑
i=0

(
U i+1v − U iv

)
=

1

n

n∑
i=1

(Unv − v) .

It follows that ‖Snw‖ ≤ 1
n‖U

nv‖ + 1
n‖v‖ ≤

2
n‖v‖ where the last inequality follows from

the fact that ‖Unv‖ ≤ ‖v‖.

d) First note that I = ker(U − I) and U − I is bounded linear operator, therefore I is a
closed subspace. If B⊥ = I then it will follow that H = B ⊕ I. Therefore, it sufices to
show that B⊥ = I. To this end, let f ∈ I and g = Uh − h ∈ B, we need to show that
〈f, g〉 = 0. To do this, observe that 〈f, g〉 = 〈f, Uh〉−〈f, h〉 = 〈Uf,Uh〉−〈f, h〉. The claim
now follows from the observation that 〈Uf,Uh〉 = 〈f, h〉 because ‖Uv‖ = ‖v‖.

e)

13



Real Analysis 2015

Problem 1

Solution:

Problem 2

Solution:

a) We first show that Tf ∈ C[0, 1]. To do this, we fix x < y ∈ [0, 1] and applying Hölder’s
inequality we obtain |Tf(x)−Tf(y)| ≤

∫ y
x |f(ξ)|dξ ≤ ‖f‖p|y−x|1/q where p−1 + q−1 = 1.

Therefore, Tf is continuous if q < ∞ or equivalently if p > 1. Taking x = 0, y = 1 and
taking supremum over all function with norm ‖f‖ ≤ 1, we also see that T is a bounded
linear operator with ‖T‖ ≤ 1. To show that T is compact, we show that the image of the
unit ball in Lp is pre-compact. To this end, we make the following two observations. For
any f ∈ Lp such that ‖f‖ ≤ 1 we have

i) ‖Tf‖∞ ≤ 1. Therefore, {Tf : ‖f‖ ≤ 1} is bounded subset of C[0, 1].

ii) |Tf(x)− Tf(y)| ≤ |y − x|1/q. Therefore, {Tf : ‖f‖ ≤ 1} is equicontinuous.

It follows from Arzela-Ascoli theorem that {Tf : ‖f‖p ≤ 1} is pre-compact.

b) Consider the sequence of functions fn(x) = n if x ∈ [0, 1
n ] and 0 otherwise. Note that

‖fn‖1 = 1 for all n ≥ 1. It is clear that |Tfn(0) − Tfn(x)| = 1 for all n ≥ 1
x . In other

words, Tfn is not equicontinuous at 0. (Alternatively, one can say that Tfn → h where
h(0) = 0 and h(x) = 1, x > 0 which is not continuous.) However, it is interesting to note
that T : L1 → L1 is indeed a compact operator. Add an example of L1 function such that
Tf is no continuois.

Problem 3

Solution:

a) Let fn := χ[n,n+1]. It is easy to verify that fn → f ≡ 0 weakly, but ‖fn − f‖2 = 1 6→ 0.

b) Expand the ‖fj − f‖2 and we see

‖fj − f‖2 = ‖f‖2 + ‖fj‖2 − 2〈fj , f〉 .

Since fj → f weakly, we get 〈fj , f〉 → ‖f‖2 and by assumption ‖fj‖2 → ‖f‖2. We
therefore obtain that ‖f − fj‖2 → 0.

Problem 4

Solution:

14



Problem 5

Solution:

Problem 6

Solution: Without loss of generality assume that E has finite measure. Now let f(x) :=

(χ−E ? χE)(x). Being a convolution of an L1 function, with an L∞ function we know that f is
continuous, moreover note that f(0) = µ(E) > 0. Since f is continuous, it follows that there is
an interval I containing 0 such that f > 0 on I. It follows that there exists δ0 > 0 such that
0 ∈ [−δ0, δ0] ⊆ I ⊆ E − E. For any δ ≤ δ0 we have µ(E ∩ E + δ) > 0.

Problem 7

Solution:

Problem 8

Solution:
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Real Analysis 2014

Problem 1
Let K be the family of all non-empty compact subsets of R. For A,B ∈ K, let

d(A,B) = max

(
sup
y∈A

inf
x∈B
|x− y|, sup

y∈B
inf
x∈A
|x− y|

)

Assume without proof that d is a metric on K. Prove that K with the metric d is complete.

Solution:

Problem 3
Suppose that fn : R → [0, 1] for n = 1, 2, . . ., and that each one of these functions is non-
decreasing, that is, fn(x) ≤ fn(y) if x ≤ y, for all n, x and y. Prove that there exist a
function g : R→ [0, 1], a finite or countably infinite set A ⊂ R, and a subsequence fnk

such
that limk→∞ fnk

(x) = g(x) for all x ∈ R\A.

Solution:

16



Real Analysis 2013

Problem 3
Let S be a subset of R with strictly positive Lebesgue measure, and let Q denote the set of
rational numbers in R. Prove that almost every (with respect to Lebesgue measure) real
number can be written as the sum of an element of S and an element of Q.

Solution:

Problem 8
Let f be a continuous real-valued function on [0,∞) with f(0) = 0. Suppose that for each
y ∈ [0, 1] we have that f(ny)→ 0 as n→∞ through the integers. Prove that f(x)→ 0 as
x→∞ through the reals.

Solution: Fix an ε > 0 and consider the set

Aεm := {x ∈ [0, 1] : |f(kx)| ≤ ε, k ≥ m}.

Now note that [0, 1] =
⋃
m≥1A

ε
m. By Baire’s category theorem, there exists some m0 such that

Am0 has a non-empty interior. Let (α, β) ⊆ Am0 ⊆ [0, 1]. Therefore, we obtain that |f(kx)| ≤ ε
whenever k ≥ m0 and x ∈ (α, β). Fix n0 ≥ maxm0, α/(β − α), then |f(y)| ≤ ε for any y ≥ n0α.
This completes the proof.

17



Real Analysis 2012

Problem 2
A metric space is said to be separable if it has a countable dense subset. Suppose µ is a
finite Borel measure on a metric space (X, d). We say µ is tight if, for every ε > 0, there
exists a compact set Kε ⊆ X such that µ (Kε) > µ(X)(1− ε). Show that, if X is complete
and separable, every finite measure µ is tight.

Solution: Let D = {xi}∞i=1 be a countable dense subset of X. Then for all m ≥ 1, we have⋃∞
i=1B(xi, 1/m) = X. So µ(

⋃∞
i=1B(xi, 1/m)) = µ(X) <∞ and thus, limk→∞ µ(

⋃k
i=1B(xi, 1/m)) =

µ(X). Hence, there exists km ∈ N, such that µ((
⋃km
i=1B(xi, 1/m))c) < ε′/2m. Let K =⋂∞

m=1(
⋃km
i=1B(xi, 1/m)) ⊂ X. Then clearly K is closed and hence complete. Now for any

δ > 0, let {B(x, δ)}x∈K be an open cover of K by δ-balls. Then there exists 1/n < δ. Then
K ⊂

⋃kn
i=1B(xi, 1/n) ⊆

⋃kn
i=1B(xi, δ). This implies that K is totally bounded, and hence

a compact subset of X. It follows immediately that µ(Kc) < ε′. Let ε′ = µ(X)ε. Then
µ(K) > µ(X)(1− ε). This completes the proof.

Problem 8
A subset C of a Hilbert space (H, ‖ · ‖) is said to be convex if for all x, y ∈ C and all
0 ≤ t ≤ 1, the linear combination tx+ (1− t)y ∈ C. Show that, given a nonempty, closed,
convex subset C ⊆ H, any element x ∈ H has a unique element y ∈ C such that

‖x− y‖ ≤ ‖x− z‖ for all z ∈ C.

Hint: Consider a minimizing sequence and argue that it is Cauchy.

Solution: Define D = {x − z| z ∈ C} ⊂ H. Easy to check that if C is convex then so is

D. Furthermore, z 7→ x − z is a homeomorphism of H onto itself (it is its own inverse) since
‖(x − z) − (x − y)‖ = ‖z − y‖. Thus, if C is closed then so is D. Thus, it suffices to prove
that any non-empty, closed, convex subset D of H has a unique element of the least norm.
This is a standard result in elementary Hilbert space theory: Let δ = inf{‖x‖ : x ∈ D}. By
definition, there is a sequence of points xn ∈ D such that ‖xn‖ → δ as n → ∞. For any
y, z ∈ H, we have ‖y + z‖2 + ‖y − z‖2 = 2‖y‖2 + 2‖z‖2. Applying this to xn/2 and xm/2, we
have ‖xn−xm‖2/4 = ‖xn‖2/2+‖xm‖2/2−‖(xn+xm)/2‖2 ≤ ‖xn‖2/2+‖xm‖2/2−δ2, since D is
convex and (xn +xm)/2 ∈ D. Thus, as n,m→∞, ‖xn‖, ‖xm‖ → δ and hence ‖xn−xm‖2 → 0.
Hence, xn’s form a Cauchy sequence, which converges to a limit say x0 ∈ H, by virtue of its
completeness. Since D is closed, we have x0 ∈ D. By continuity of the norm function, it follows
that ‖x0‖ = limn→∞ ‖xn‖ = δ. This proves the existence part of the problem.

For uniqueness, let y, z ∈ D be such that both have norm equal to δ. Then ‖y/2− z/2‖2 =
‖y‖2/2 + ‖z‖2/2− ‖(y + z)/2‖2 = δ2 − ‖(y + z)/2‖2 ≤ 0, since (y + z)/2 ∈ D, by its convexity.
Thus, it follows that y = z, establishing the uniqueness.
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Real Analysis 2011

Problem 1
Suppose A is a lebesgue measurable subset of R with λ(A) > 0. Show that for all λ(A) >
b > 0 there is a compact set B ⊂ A with λ(B) = b.

Solution: Given λ(A) > b. By inner regularity of Lebesgue measure, there exists compact

subset K ⊂ A such that λ(A) > λ(K) > b. By Heine-Borel, K is closed and bounded and
thus contained in a bounded interval [−d, d]. Consider the function f : [−d, d]→ R defined by
f(x) = λ([−d, x] ∩K). For d > y > x > −d, f(y) − f(x) = λ([x, y] ∩K) ≤ λ([x, y]) = x − y.
Thus f is uniformly continuous function. Note that f(−d) = 0 and f(d) = λ(K) > b > 0. Thus,
by intermediate value theorem, there exists x0 ∈ (−d, d) such that f(x0) = λ([−d, x0]∩K) = b.
Thus, [−d, x0] ∩K ⊂ K ⊂ A is the required compact subset.

Problem 3
Let f : [0, 1]→ R. Suppose that the one-sided derivatives

D−f(x) = limh<0,h→0
f(x+h)−f(x)

h (0 < x ≤ 1),

D+f(x) = limh>0,h→0
f(x+h)−f(x)

h (0 ≤ x < 1)

exist for all x in the indicated ranges and are bounded in absolute value by a constant
K <∞. Prove that the (two-sided) derivative f ′(x) exists for almost every x ∈ (0, 1).

Solution:

Problem 8
Let B(x, r) ⊂ R2 denote the open disc with center x and radius r and let S(x, r) be the
boundary of B(x, r). Let D = B((0, 0), 1) be the unit open disc, and let H be the family
of all bounded Borel measurable functions f : D → R. Let

A =

{
f ∈ H : f(x) =

1

2πr

∫
S(x,r)

f(y)dσ(y) for all circles S(x, r) ⊂ D

}

where dσ(y) denotes the arc length measure on S(x, r), and

B =

{
f ∈ H : f(x) =

1

πr2

∫
B(x,r)

f(y)dy for all discsB(x, r) ⊂ D

}

where dy denotes 2 -dimensional Lebesgue measure. Prove that A = B. (It may be useful
to show that all functions in B are continuous.)

Solution: The fact that A ⊆ B is more or less obvious. Let f ∈ A. Fix x ∈ D and let r > 0 be

such that B(x, r) ⊆ D. Then

1

πr2

∫
B(x,r)

f(y) dy =
1

πr2

∫ r

0

∫
Sx,t

f(tω)dσ(ω) dt

=
2

r2

∫ r

0
f(x)tdt = f(x) .
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It follows that A ⊆ B. On the other hand, let f ∈ B, we first show that f is continuous. To see
this, observe that let x, y ∈ D and choose r > 0 sufficiently small so that B(x, r)∪B(y, r) ⊆ D
and observe that

|f(x)− f(y)| ≤ 1

πr2

∫
B(x,r)∆B(y,r)

|f(ξ)| dξ

≤ ‖f‖∞
1

πr2
µ(B(x, r)∆B(y, r)).

Since µ(B(x, r)∆B(y, r))→ 0 as |x− y| → 0, the continuity of f follows.
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