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Abstract

The purpose of this note is to give an example of a potential series which converges at any
point of its circle of convergence, but whose sum is discontinuous on this circle.

1 Introduction

Denote by P the potential series obtained by omitting the parentheses in the series

∞∑
n=1

n2

2n
z2

n

(α2n−1
n + α2n−2

n z + . . .+ αnz
2n−1 + z2

n−1), (1)

where

αn =
n2 − 2 + 2nι

n2 + 1
. (2)

Now we demonstrate that the series (1) converges on |z| = 1. It is immediate from formula (2) that

|αn| = 1, (3)

and

|1− αn| =
2√

1 + n2
. (4)

Now let z be a complex number such that |z| = 1. For |z| ≠ αn, we can write the nth term of the
series (1) as

un(z) =
n2

2n
z2

n z2
n − α2n

n

z − αn
,

which yields

|un(z)| ≤
2n2

2n · |z − αn|
, for z ̸= αn, |z| = 1. (5)

Consider the two cases:

1.1 z ̸= 1

Suppose |1− z| ≥ 2δ for some δ > 0. For n > 2
δ , we obtain

√
n2 + 1 > n > 2

δ , which accoridng to (4)
gives |1− αn| < δ. Therefore, we obtain

|z − αn| = |(1− zn)− (1− αn)| ≥ |1− z| − |1− αn| > δ,

which gives us that

|un(z)| <
2n2

2nδ
, for n >

2

δ
.

This shows that the series (1) converges for |z| = 1, z ̸= 1 (since the series
∑

n2

2n converges).
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1.2 z = 1

From (??) and (5), we find

|un(z)| ≤
n2

√
n2 + 1

2n
, for n = 1, 2, 3, . . . ,

which yields, as we see without difficulty, that the series (1) converges for z = 1. The series therefore
always converges for |z| = 1. Let us denote, for demonstration, by Pk(z) the sum of the first k − 1
terms of the series P (z). Suppose k be an index > 1: There exists a natural number n (depending on
k) such that

2n ≤ k < 2n+1; (6)

so, by denoting by Sn(z) the sum of the first n terms of the series (1), we obtain

Pk(z) = Sn−1(z) +
n2z2

n

2n
(α2n−1

n + α2n−2
n z + . . .+ α2n+1−k−1

n zk−2n),

from where
Pk(z)− Sn−1(z) =

which gives

|Pk(z)− Sn−1(z)| ≤
2n2

2n · |z − αn|
, for z ̸= αn, |z| = 1. (7)

Suppose z ̸= 1. For k > 22/δ+1, let δ = 1
2 |1− z|. This results

|Pk(z)− Sn−1(z)| ≤
2n2

2nδ
, for k > 22/δ+1. (8)

As n → ∞ with k, it follows that sequence of partial sums Pk(z) converges. For z = 1, the inequality
(7) and (4) gives that

|Pk(z)− Sn−1(z)| ≤
n2

√
n2 + 1

2n
,

from which it follows that Pk(1) converges. Thus we have demonstrated that the series P (z) converges
for |z| = 1. Let k be any natural number and let us calculate P (α). It is evidently sufficient to evaluate
the series (1) at z = αk. Note that for any two natural number k, n we have

|αk − αn| =
2|k − n|√

((k2 + 1)(n2 + 1)
,

and therefore

|αk − αn| ≥
2√

((k2 + 1)(n2 + 1)
for n ̸= k.

Thus, we obtain from (5) that

|un(αk)| ≤
n2

2n

√
(k2 + 1)(n2 + 1) for k ̸= n. (9)

This gives ∣∣∣∣∣
k−1∑
n=1

unαk +

∞∑
n=k+1

un(αk)

∣∣∣∣∣ < √
k2 + 1

∞∑
n=1

n2
√
n2 + 1

2n
. (10)

Suppose
∑∞

n=1
n2

√
n2+1
2n = A (It is obviously a positive finite number). We will have according to (10)

|P (αk)− uk(αk)| < A
√

k2 + 1 < A(k + 1). (11)

But we evidently have

uk(αk) = k2α2k+1−1
k ,
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from which it follows that
|uk(αk) = k2|. (12)

From inequalities (11) and (12) we obtain

|P (αk)| ≥ |uk(αk)| − |uk(αk)− P (αk)| > k2 −A(k + 1),

which shows that by taking k sufficiently large, we can make P (αk) sufficiently large. The function
P (z) therefore is not bounded on |z| = 1(around z = 1): therefore it is not continuous on |z| = 1
(being discontinuous at z = 1).
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