Beyond Ulam-Hammersley problem

Raghavendra Tripathi
Department of Mathematics
University of Washington, Seattle

Introduction

Theorem (Erdös-Szekeres, 1935 (A combinatorial problem in geometry))

Let $a_{1}, \ldots, a_{m n+1}$ be a sequence of distinct real numbers. Then there exists an increasing subsequence of length m or a decreasing subsequence of length n (or both).

Introduction

Theorem (Erdös-Szekeres, 1935 (A combinatorial problem in geometry))

Let $a_{1}, \ldots, a_{m n+1}$ be a sequence of distinct real numbers. Then there exists an increasing subsequence of length m or a decreasing subsequence of length n (or both).

Ulam, 1935, Hammersley 1970

Let $\sigma_{n} \in S_{n}$ be a random permutation and let L_{n} be the length of longest increasing subsequence in σ_{n}. How does $L\left(\sigma_{n}\right)$ behave as $n \rightarrow \infty$?

Introduction

Theorem (Erdös-Szekeres, 1935 (A combinatorial problem in geometry))

Let $a_{1}, \ldots, a_{m n+1}$ be a sequence of distinct real numbers. Then there exists an increasing subsequence of length m or a decreasing subsequence of length n (or both).

Ulam, 1935, Hammersley 1970

Let $\sigma_{n} \in S_{n}$ be a random permutation and let L_{n} be the length of longest increasing subsequence in σ_{n}. How does $L\left(\sigma_{n}\right)$ behave as $n \rightarrow \infty$?

From Erdös-Szekeres theorem one obtains

$$
E\left(L_{n}\right)=E \frac{L_{n}+D_{n}}{2} \geq E\left(\sqrt{L_{n} D_{n}}\right) \geq \sqrt{n}
$$

As a consequence, we also get

$$
\liminf \frac{E\left(L_{n}\right)}{\sqrt{n}} \geq 1
$$

Towards accurate asymptotic

Upper bound
As $n \rightarrow \infty$, we have

$$
\lim \sup \frac{E L_{n}}{\sqrt{n}} \leq e
$$

Towards accurate asymptotic

Upper bound

As $n \rightarrow \infty$, we have

$$
\lim \sup \frac{E L_{n}}{\sqrt{n}} \leq e
$$

Theorem (Hammersley, 1970)

$$
c_{2}:=\lim \frac{E L_{n}}{\sqrt{n}} \text { exists! }
$$

Towards accurate asymptotic

Upper bound

As $n \rightarrow \infty$, we have

$$
\lim \sup \frac{E L_{n}}{\sqrt{n}} \leq e
$$

Theorem (Hammersley, 1970)

$$
c_{2}:=\lim \frac{E L_{n}}{\sqrt{n}} \text { exists! }
$$

Moreover, we have

$$
\frac{L\left(\sigma_{n}\right)}{\sqrt{n}} \rightarrow c_{2}
$$

in measure/probability.

More generally...

Bollabaás-Winkler, 1988. (Longest Chain amaong random points in Euclidean space)
Let n points be chosen uniformly at random from unit cube $[0,1]^{d}$. Let L_{n}^{d} be the length of longest chain. Then,

$$
\lim \frac{L_{n}^{d}}{n^{1 / d}} \rightarrow c_{d}
$$

for some $1<c_{k}<e$.

More generally...

Bollabaás-Winkler, 1988. (Longest Chain amaong random points in Euclidean space)
Let n points be chosen uniformly at random from unit cube $[0,1]^{d}$. Let L_{n}^{d} be the length of longest chain. Then,

$$
\lim \frac{L_{n}^{d}}{n^{1 / d}} \rightarrow c_{d}
$$

for some $1<c_{k}<e$.

- $c_{d} \geq \frac{d^{2}}{d!^{1 / d} \Gamma(1 / k)}$.

More generally...

Bollabaás-Winkler, 1988. (Longest Chain amaong random points in Euclidean space)
Let n points be chosen uniformly at random from unit cube $[0,1]^{d}$. Let L_{n}^{d} be the length of longest chain. Then,

$$
\lim \frac{L_{n}^{d}}{n^{1 / d}} \rightarrow c_{d}
$$

for some $1<c_{k}<e$.

- $c_{d} \geq \frac{d^{2}}{d!^{1 / d} \Gamma(1 / k)}$.

Questions

- Is c_{d} monotonic?
- Non-trivial lower bound on c_{d}.
- precise value of c_{d} ? Any guess?

All we know!

Theorem (Johansson, Logan-Shepp, Jinho Baik, Percy Deift,
Aldous-Diaconis, 1990-1998)

All we know!

Theorem (Johansson, Logan-Shepp, Jinho Baik, Percy Deift, Aldous-Diaconis, 1990-1998)

$$
c_{2}=2
$$

All we know!

Theorem (Johansson, Logan-Shepp, Jinho Baik, Percy Deift, Aldous-Diaconis, 1990-1998)

$$
c_{2}=2
$$

- Easy Direction: $c_{2} \leq 2$.
- Show that $E\left(L_{n}\right)-E\left(L_{n-1}\right) \leq \frac{1}{\sqrt{n}}$.

All we know!

Theorem (Johansson, Logan-Shepp, Jinho Baik, Percy Deift, Aldous-Diaconis, 1990-1998)

$$
c_{2}=2
$$

- Easy Direction: $c_{2} \leq 2$.
- Show that $E\left(L_{n}\right)-E\left(L_{n-1}\right) \leq \frac{1}{\sqrt{n}}$.
- $c_{2} \geq 2$ is extremely involved.

Theorem (Logan-Shepp)

- RSK correspondence gives a pair of Young-tableau.
- Under this correspondence we push forward the uniform measure on S_{n} to the space of Young diagrams.
- Young diagram corresponds to irreducible representations of S_{n} of maximal dimension.

