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Introduction

Theorem (Erdös-Szekeres, 1935 (A combinatorial problem in
geometry))

Let a1, . . . , amn+1 be a sequence of distinct real numbers. Then
there exists an increasing subsequence of length m or a decreasing
subsequence of length n (or both).

Ulam, 1935, Hammersley 1970

Let σn ∈ Sn be a random permutation and let Ln be the length of
longest increasing subsequence in σn. How does L(σn) behave as
n→∞?

From Erdös-Szekeres theorem one obtains

E (Ln) = E
Ln + Dn

2
≥ E (

√
LnDn) ≥

√
n.

As a consequence, we also get

lim inf
E (Ln)√

n
≥ 1.

Raghavendra Tripathi Beyond Ulam-Hammersley problem



Introduction

Theorem (Erdös-Szekeres, 1935 (A combinatorial problem in
geometry))

Let a1, . . . , amn+1 be a sequence of distinct real numbers. Then
there exists an increasing subsequence of length m or a decreasing
subsequence of length n (or both).

Ulam, 1935, Hammersley 1970

Let σn ∈ Sn be a random permutation and let Ln be the length of
longest increasing subsequence in σn. How does L(σn) behave as
n→∞?

From Erdös-Szekeres theorem one obtains

E (Ln) = E
Ln + Dn

2
≥ E (

√
LnDn) ≥

√
n.

As a consequence, we also get

lim inf
E (Ln)√

n
≥ 1.

Raghavendra Tripathi Beyond Ulam-Hammersley problem



Introduction

Theorem (Erdös-Szekeres, 1935 (A combinatorial problem in
geometry))

Let a1, . . . , amn+1 be a sequence of distinct real numbers. Then
there exists an increasing subsequence of length m or a decreasing
subsequence of length n (or both).

Ulam, 1935, Hammersley 1970

Let σn ∈ Sn be a random permutation and let Ln be the length of
longest increasing subsequence in σn. How does L(σn) behave as
n→∞?

From Erdös-Szekeres theorem one obtains

E (Ln) = E
Ln + Dn

2
≥ E (

√
LnDn) ≥

√
n.

As a consequence, we also get

lim inf
E (Ln)√

n
≥ 1.

Raghavendra Tripathi Beyond Ulam-Hammersley problem



Towards accurate asymptotic

Upper bound

As n→∞, we have

lim sup
ELn√
n
≤ e.

Theorem (Hammersley, 1970)

c2 := lim
ELn√
n

exists!

Moreover, we have
L(σn)√

n
→ c2,

in measure/probability.
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More generally...

Bollabaás-Winkler, 1988. (Longest Chain amaong random points
in Euclidean space)

Let n points be chosen uniformly at random from unit cube [0, 1]d .
Let Ldn be the length of longest chain. Then,

lim
Ldn
n1/d

→ cd ,

for some 1 < ck < e.

cd ≥ d2

d!1/dΓ(1/k)
.

Questions

Is cd monotonic?

Non-trivial lower bound on cd .

precise value of cd? Any guess?
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All we know!

Theorem (Johansson, Logan-Shepp, Jinho Baik, Percy Deift,
Aldous-Diaconis, 1990-1998)

c2 = 2.

Easy Direction: c2 ≤ 2.

Show that E (Ln)− E (Ln−1) ≤ 1√
n
.

c2 ≥ 2 is extremely involved.
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c2 ≥ 2.

Theorem (Logan-Shepp)

RSK correspondence gives a pair of Young-tableau.

Under this correspondence we push forward the uniform
measure on Sn to the space of Young diagrams.

Young diagram corresponds to irreducible representations of
Sn of maximal dimension.
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