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Introduction

Motivation (Problem 1)

Mantel-Turán Problem

Among all graphs on n vertices containing no triangles, maximize the number of edges.

Since we are interested in large n, we normalize. Let’s define

t(K3, G) =
No. of triangles in G

n3
, t(K2, G) =

No. of edges in G

n2
.

Problem

Maximize t(K2, G) subject to the constraint t(K3, G) = 0.

Mantel-Turán Theorem

t(K2, G) > 1
2

=⇒ t(K3, G) > 0.
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Introduction

Motivation (Problem 2)

Erdös Theorem

t(C4, G) ≥ t(K2, G)4 where t(C4, G) = (No. of 4-cycles in G)/n4.

Problem

Find the minimum of t(C4, G) over all graphs with t(K2, G) ≥ 1/2.

We know that the 4-cycle density must be ≥ 1/16.

t(C4, G) = 1/16 is not achieved by any finite graph.

t(C4, G) can be arbitrarily close to 1/16 for appropriate families of graphs.
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Introduction

Motivation (Problem 3)

Let G be a weighted graph on n vertices with weighted adjanceny matrix A.

Let F be a finite simple graph on m vertices on m vertices.

We define homomorphism density of F into K

t(F,G) =
1

nm

∑
i1,i2,...,im

∏
{u,v}∈E(F )

A(iu, iv) .

Ising model on graphs

F := A graph on m vertices. Every vertex may have a state 1, 2, . . . , q.

Between two neighboring vertices with states i, j, there is an interaction energy Jij .

A configuration is a map σ : V (F ) → [q].

The partition function is given by

Z =
∑

σ:V (F )→[q]

exp

−
∑

uv∈E(F )

Jσ(u),σ(v)

 =
∑

σ:V (G)→[q]

∏
uv∈E(F )

βσ(u),σ(v),

where βij = exp (−Jij).

Miniminizing Z is equivalent to minimizingt(F,Kβ
q ), where Kβ

q is complete graph with
edge weights βij .
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Introduction

Summary

There are interesting optimization problems on graphs.

Some of these optimization problem may not admit solutions in the space of finite
graphs.

Plan

Fill in the holes in the space of graphs, that is, take a completion of the space of all
finite graphs.

Try solving optimization problem on the complete space.

These optimization problems have rich symmetries (exchangeability). Can we exploit
that?
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Introduction

Detour: Interacting Diffusion (McKean, Kac, Snitzman, JKO ...)

Consider the following example of interacting diffusions

dXi,N
t =

1

N

N∑
j=1

∇b(Xi,N
t −Xj,N

t ) dt+ dW i
t , i = 1, . . . , N

Xi,N
0 = xi

0 .

Let µN
t := N−1

∑N
i=1 δXi,N (t).

Then, µN
t → µt weakly where µt is a gradient flow with

respect to 2-Wasserstein metric, given as

∂tµt(x) = −divx [µt(x) · (∇b ∗ µt)(x)] +
1

2
∆µt(x) . (1.1)

Interacting particles system converges to McKean-Vlasov

Suppose Xi,N
0 are i.i.d. with distribution µ0. As N → ∞, each Xi,N

· has a natural limit X̄i.
Each X̄i is an independent copy of following McKean-Vlasov process

dXt = (∇b ∗ µt)(Xt) dt+ dBt , Xt=0 = X0 ∼ µ0 .
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Introduction

Detour continued...

Morality

Think of each particle Xi,N as doing a (noisy) gradient flow.

Drift of the particle Xi,N depends on ‘itself’ Xi,N and ‘on the ensemble’
N−1

∑N
i=1 δXi,N in a symmetric way.

Then, ‘the ensemble limit’ also performs a gradient flow in suitable sense.

And, the evolution of a typical particle can be described by a McKean-Vlasov equation.
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Optimization on Graphons

Introduction

Objective

Study large scale optimization problems over dense weighted unlabeled graphs.

Let G = (V,E) be a graph and let A be an adjacency matrix of G.

≡

1

2

3

4


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

 ∼=

3

2

4

1


0 0 1 1
0 0 1 1
1 1 0 1
1 1 1 0


Figure: Symmetry in unlabeled graphs.

Examples of functions

Edge density: h−(G) = (# of edges in G)/n2.

Triangle density: h△(G) = (# of △s in G)/n3.

Invariant functions

A function F : Mn → R is said to be invariant function/graph function if F (A) = F (Aσ) for
all permutations σ ∈ Sn and A ∈ Mn, where Aσ(i, j) = A(σ(i), σ(j)).
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Optimization on Graphons

Plan and analogies with interacting diffusion

Objective

Let F be graph function. Our goal is to minimize F over large graphs.

Can perform gradient descent on finite graphs/symmetric matrices.

Exploiting the symmetry

Think of the problem as an optimization problem on the space of ‘graphons’.

Hope-Pray-Prove! The gradient descent process on finite graphs/symmetric matrices
converge to a limit as n → ∞.

Can we show that the limit of GD is a gradient flow on graphons?

Can one construct natural Markov processes on graphs that converge to the gradient
flow?

Graphons vs Wasserstein space

Given a graph on n vertices is akin to particle ensemble

Think of every edge as a particle and edge-weights are evolving
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Setup and Results
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Setup and Results Setup

Graphons

Kernels W

A kernel is a measurable function W : [0, 1]2 → [−1, 1] such that W (x, y) = W (y, x).

Adjacency matrix ≡ kernel.

1

16


−16 −15 −12 −7
−15 −14 −11 1
−12 −11 −6 4
−7 1 4 9



Symmetric matrix A
0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

x

y

−1

−0.5

0

0.5

1

Kernel representation of A

Identify adjacency matrix/kernel up to ‘permutations’.

Identify W1
∼= W2 if one can be obtained by ‘relabeling’ the vertices of the other, i.e.,

W1(φ(x), φ(y)) = W2(x, y), whereϕ : [0, 1] → [0, 1]is a measure preserving map.
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Setup and Results Setup

Graphons

Graphons Ŵ (Lovász & Szegedy, 2006): Ŵ := W/∼=

Cut metric :: Weak convergence

Cut metric, δ□, metrizes graph convergence.

(Ŵ, δ□) is compact.

Invariant L2 metric δ2 :: 2-Wasserstein metric W2

Stronger than the cut metric (i.e., δ□ convergence ⇏ δ2 convergence).

Gromov-Wasserstein distance between ([0, 1],Leb,W1) and ([0, 1],Leb,W2).

We show1

The metric δ2 is geodesic (just like W2). Geodesic convexity on (Ŵ, δ2).

Notion of ‘gradient’ on (Ŵ, δ2) called ‘Frechét-like derivative’ !

Construction of ‘gradient flows’ on (Ŵ, δ2)2.

1Gradient flows on graphons - Oh, Pal, Somani, Tripathi, 2021
2Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré,

2008
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Setup and Results Results

Existence of gradient flow on Graphons

Theorem [OPST ’21]

If R : Ŵ → R
has a Fréchet-like derivative,

is geodesically semiconvex in δ2,

then starting from any W0 ∈ Ŵ, ∃! gradient flow curve (Wt)t∈R+
for R

satisfying

Wt := W0 −
∫ t

0
DR(Ws) ds, t ∈ R+,

inside Ŵ. At the boundary {−1, 1} of Ŵ, add constraints to contain it.

Scaling limits of GD [OPST ’21 + HOPST ’22]

Euclidean GD/SGD of Rn over n× n symmetric matrices, converges to the ‘gradient flow’ of
R on the metric space of graphons.
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Setup and Results Results

Example

For p ∈ [0, 1], define the entropy function I(p) = p log(p) + (1− p) log(p). In the following we
assume W : [0, 1]2 → [0, 1].
For a kernel W , define

I(W ) :=
x

I(W (x, y)) dxdy.

Gradient flow of F (W ) = t(K3,W ) + βI(W )

Wt(x, y) = W0(x, y)− 3

∫ t

0

∫
Ws(x, z)Ws(z, y) dz ds− β

∫ t

0
log

(
Ws(x, y)

1−Ws(x, y)
ds

)
.

Finite dimensional gradient descent

W
(n)
t (i, j) = W

(n)
0 − 3n2

∫ t

0

1

n3

(
W

(n)
s

)2
(i, j) ds− β

∫ t

0
log

(
W

(n)
s (i, j)

1−W
(n)
s (i, j)

)
.
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Setup and Results Results

Markov Chain converging to gradient flow

Suppose we want to construct a Markov process on graphs that converges to the gradient
flow of triangle density t(K3, ·).

Start with Gn,0.

At each time step τn, all the edges in Gn,k flip (or don’t flip according to following rule).

If {i, j} is not an edge in Gn,k then {i, j} remains a non-edge in Gn,k+1.
If {i, j} is an edge in Gn,k then drop it with probability

pij = τn
∆ij

n
,

where ∆ij = Number of triangles with containing {i, j}.
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Setup and Results Scaling limit of Noisy SGD

Scaling limit of Noisy SGD

For n ∈ N, let ∇Rn(A) = Eξ[∇ℓn(A; ξ)] for A ∈ Mn.

SGD

Given the k-th iterate W
(n)
k ∈ Mn, sample ξ,

W
(n)
k+1 = W

(n)
k − τn · n2 ∇ℓn(W

(n)
k ; ξ)︸ ︷︷ ︸

stochastic Euclidean
gradient

+ τ
1/2
n · ξk ∼ N(0, I)︸ ︷︷ ︸

independent added noise

If W
(n)
0

δ2−−→ W0, and τn → 0, as n → ∞, then a.s.

W (n)
δ□
⇒ Γ, as n → ∞,

where Γ: t 7→ Γ(t) is the curve described by the McKean-Vlasov equation.
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Setup and Results Scaling limit of Noisy SGD

McKean-Vlasov equation

Let (Ω,F ,P) be a probability space with a Brownian Motion B(t), and

(U, V )
i.i.d.∼ Uni[0, 1].

Consider the process (X(t),Γ(t)) such that

on {U = u, V = v},

dX(t) = −(DR)(Γ(t))(u, v) dt+ dB(t) +dL−(t)− dL+(t)︸ ︷︷ ︸
constrain in [−1, 1]

,

Γ(t)(x, y) = E[X(t) | (U, V ) = (x, y)], ∀ (x, y) ∈ [0, 1]2.

(McKean-Vlasov)

Expected to arise as limit of large number of graph dynamics:

“Mean-field interaction”: For any edge-weight, the effect of all others edge-weights on its
evolution is invariant under vertex relabeling.

“Propagation of chaos”: Every edge-weight between a set of m randomly chosen vertices
evolves independently in the limit.

Existence + uniqueness when DR is L2 Lipschitz - [HOPST ’22]
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Ideas about proofs

Proof Sketch:Scaling limits of gradient flow

We show that the cut topology is consistent with the invariant L2 metric δ23.

At every n ∈ N, consider implicit Euler update rule with positive a step size τn.

The limit is obtained by showing Γ-convergence.

3Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré
’08
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Ideas about proofs

Proof Sketch: Scaling limits of noisy SGD

The existence of the deterministic limit Γ is obtained as a limit of a Picard iterations.

Independently sample a sequence of vertices.

From SGD iterations W (n)(t), sample a random m × m submatrix process W (n)(t)[m].
Couple and get matrix processes X(t)[m] & Γ(t)[m] from McKean-Vlasov type SDEs.

Use concentration estimates to show that as curves,

W (n)[m]
δ□
⇒ Γ, as n → ∞, and m → ∞, a.s.

We recover the scaling limit of SGD (without added noise) as a corollary.
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Future directions

Future directions-I

Cut convergence gives limited information

What can we infer if Wn → W in cut topology?

We can infer the convergence of t(F,Wn) → t(F,W ) for any finite graphs.

Unfortunately, we can’t say
s

Wn(x, y)2 dxdy →
s

W (x, y)2 dxdy.

Cut topology is not good for weighted graphs

Let G(n, p) be the Erdös-Rènyi graph.

G(n, p) → Wp ≡ p.

Let K(n, p) be the complete weighted graph withe edge weights p.

K(n, p) → Wp.

We would want to say G(n, p) converges to an infinite exchangeable array G(∞, p) with
i.i.d. Bernoulli random variables.

And, K(n, p) converges to an infinite (deterministic) array K(∞, p).

Stronger but natural topology? Measure-valued graphons? In progress.
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Future directions

Simulations

Turán’s theorem: The n-vertex triangle-free graph with the maximum number of edges
is a complete bipartite graph.

Q. Can we recover this theorem through an optimization problem on graphons?

F (W ) = t(K3,W )−
1

10
t(K2,W ) .

(a) GD (n = 7) (b) GD (n = 32) (c) GD (n = 256)
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Thank you

Thank you!

Thank you!

ArXiv version4: https://arxiv.org/abs/2210.00422

4Stochastic optimization on matrices and a graphon McKean-Vlasov limit - Harchaoui, Oh, Pal, Somani,
Tripathi, 2022
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