Dynamic optimization on graphons

Zaid Harchaoui^{1,3}, Sewoong Oh^{1,4}, Soumik Pal², Raghav Somani¹ and Raghav Tripathi²

¹UW CSE, ²UW Math, ³UW Statistics & ⁴Google

February 2, 2023

Optimization on graphons

イロト イポト イヨト イ

February 2, 2023

- Motivation(s)
- Detour: Interacting particle system
- Optimization on graphons: Setup and Results
- Proof Sketches
- Future directions

イロト イヨト イヨト イヨト

February 2, 2023

- 12

Motivation (Problem 1)

Mantel-Turán Problem

Among all graphs on n vertices **containing no triangles**, maximize the number of edges.

Since we are interested in large n, we normalize. Let's define

$$t(K_3,G) = \frac{\text{No. of triangles in } G}{n^3}$$
, $t(K_2,G) = \frac{\text{No. of edges in } G}{n^2}$

Problem

Maximize $t(K_2, G)$ subject to the constraint $t(K_3, G) = 0$.

Mantel-Turán Theorem

 $t(K_2, G) > \frac{1}{2} \implies t(K_3, G) > 0.$

Optimization on graphons

イロト イヨト イヨト イヨト

- 2

3 / 23

February 2, 2023

Motivation (Problem 2)

Erdös Theorem

 $t(C_4, G) \ge t(K_2, G)^4$ where $t(C_4, G) = (\text{No. of 4-cycles in } G)/n^4$.

Problem

Find the minimum of $t(C_4, G)$ over all graphs with $t(K_2, G) \ge 1/2$.

- We know that the 4-cycle density must be $\geq 1/16$.
- $t(C_4, G) = 1/16$ is not achieved by any finite graph.
- $t(C_4, G)$ can be arbitrarily close to 1/16 for appropriate families of graphs.

イロト イヨト イヨト イヨト

February 2, 2023

Motivation (Problem 3)

- Let G be a weighted graph on n vertices with weighted adjanceny matrix A.
- Let F be a finite simple graph on m vertices on m vertices.
- We define homomorphism density of F into K

$$t(F,G) = \frac{1}{n^m} \sum_{i_1, i_2, \dots, i_m} \prod_{\{u,v\} \in E(F)} A(i_u, i_v) .$$

Ising model on graphs

- F := A graph on m vertices. Every vertex may have a state $1, 2, \ldots, q$.
- Between two neighboring vertices with states i, j, there is an interaction energy J_{ij} .
- A configuration is a map $\sigma: V(F) \to [q]$.
- The partition function is given by

$$Z = \sum_{\sigma: V(F) \to [q]} \exp\left(-\sum_{uv \in E(F)} J_{\sigma(u), \sigma(v)}\right) = \sum_{\sigma: V(G) \to [q]} \prod_{uv \in E(F)} \beta_{\sigma(u), \sigma(v)}$$

where $\beta_{ij} = \exp(-J_{ij})$.

• Minimizing Z is equivalent to minimizing $t(F, K_q^{\beta})$, where K_q^{β} is complete graph with edge weights β_{ij} .

Summary

- There are interesting optimization problems on graphs.
- Some of these optimization problem may not admit solutions in the space of finite graphs.

イロト イヨト イヨト イヨト

Summary

- There are interesting optimization problems on graphs.
- Some of these optimization problem may not admit solutions in the space of finite graphs.

Plan

- Fill in the holes in the space of graphs, that is, take a completion of the space of all finite graphs.
- Try solving optimization problem on the complete space.
- These optimization problems have rich symmetries (exchangeability). Can we exploit that?

イロト イポト イヨト イヨト

Detour: Interacting Diffusion (McKean, Kac, Snitzman, JKO ...)

Consider the following example of interacting diffusions

$$dX_t^{i,N} = \frac{1}{N} \sum_{j=1}^N \nabla b(X_t^{i,N} - X_t^{j,N}) \, \mathrm{d}t + dW_t^i, \quad i = 1, \dots, N$$
$$X_0^{i,N} = x_0^i \; .$$

Let $\mu_t^N\coloneqq N^{-1}\sum_{i=1}^N \delta_{X^{i,N}(t)}.$

イロト イヨト イヨト イヨト

Detour: Interacting Diffusion (McKean, Kac, Snitzman, JKO ...)

Consider the following example of interacting diffusions

$$dX_t^{i,N} = \frac{1}{N} \sum_{j=1}^N \nabla b(X_t^{i,N} - X_t^{j,N}) \, \mathrm{d}t + dW_t^i, \quad i = 1, \dots, N$$
$$X_0^{i,N} = x_0^i.$$

Let $\mu_t^N \coloneqq N^{-1} \sum_{i=1}^N \delta_{X^{i,N}(t)}$. Then, $\mu_t^N \to \mu_t$ weakly where μ_t is a gradient flow with respect to 2-Wasserstein metric, given as

$$\partial_t \mu_t(x) = -\operatorname{div}_x \left[\mu_t(x) \cdot (\nabla b * \mu_t)(x) \right] + \frac{1}{2} \Delta \mu_t(x) .$$
(1.1)

イロト イヨト イヨト イヨト 一日

February 2, 2023

Detour: Interacting Diffusion (McKean, Kac, Snitzman, JKO ...)

Consider the following example of interacting diffusions

$$dX_t^{i,N} = \frac{1}{N} \sum_{j=1}^N \nabla b(X_t^{i,N} - X_t^{j,N}) \, \mathrm{d}t + dW_t^i, \quad i = 1, \dots, N$$
$$X_0^{i,N} = x_0^i.$$

Let $\mu_t^N \coloneqq N^{-1} \sum_{i=1}^N \delta_{X^{i,N}(t)}$. Then, $\mu_t^N \to \mu_t$ weakly where μ_t is a gradient flow with respect to 2-Wasserstein metric, given as

$$\partial_t \mu_t(x) = -\operatorname{div}_x \left[\mu_t(x) \cdot (\nabla b * \mu_t)(x) \right] + \frac{1}{2} \Delta \mu_t(x) .$$
(1.1)

Interacting particles system converges to McKean-Vlasov

Suppose $X_0^{i,N}$ are i.i.d. with distribution μ_0 . As $N \to \infty$, each $X_{\cdot}^{i,N}$ has a natural limit \bar{X}^i . Each \bar{X}^i is an independent copy of following McKean-Vlasov process

$$dX_t = (\nabla b * \mu_t)(X_t) dt + dB_t, X_{t=0} = X_0 \sim \mu_0.$$

イロト イヨト イヨト イヨト

Detour continued...

Morality

- Think of each particle $X^{i,N}$ as doing a (noisy) gradient flow.
- Drift of the particle $X^{i,N}$ depends on 'itself' $X^{i,N}$ and 'on the ensemble' $N^{-1}\sum_{i=1}^N \delta_{X^{i,N}}$ in a symmetric way.
- Then, 'the ensemble limit' also performs a gradient flow in suitable sense.
- And, the evolution of a typical particle can be described by a McKean-Vlasov equation.

イロト イヨト イヨト イヨト

February 2, 2023

Objective

Study large scale optimization problems over dense weighted unlabeled graphs.

イロト イヨト イヨト イヨト

Objective

Study large scale optimization problems over dense weighted unlabeled graphs.

Let G = (V, E) be a graph and let A be an adjacency matrix of G.

Figure: Symmetry in unlabeled graphs.

Examples of functions

- Edge density: $h_{-}(G) = (\# \text{ of edges in } G)/n^2$.
- Triangle density: $h_{\triangle}(G) = (\# \text{ of } \triangle s \text{ in } G)/n^3$.

February 2, 2023

Objective

Study large scale optimization problems over dense weighted unlabeled graphs.

Let G = (V, E) be a graph and let A be an adjacency matrix of G.

Figure: Symmetry in unlabeled graphs.

Examples of functions

- Edge density: $h_{-}(G) = (\# \text{ of edges in } G)/n^2$.
- Triangle density: $h_{\triangle}(G) = (\# \text{ of } \triangle s \text{ in } G)/n^3$.

Invariant functions

A function $F: \mathcal{M}_n \to \mathbb{R}$ is said to be *invariant function/graph function* if $F(A) = F(A^{\sigma})$ for all permutations $\sigma \in S_n$ and $A \in \mathcal{M}_n$, where $A^{\sigma}(i, j) = A(\sigma(i), \sigma(j))$.

・ロト ・日ト ・ヨト ・ヨト

Plan and analogies with interacting diffusion

Objective

Let F be graph function. Our goal is to minimize F over large graphs.

Can perform gradient descent on finite graphs/symmetric matrices.

Exploiting the symmetry

- Think of the problem as an optimization problem on the space of 'graphons'.
- Hope-Pray-Prove! The gradient descent process on finite graphs/symmetric matrices converge to a limit as $n \to \infty$.

February 2, 2023

Plan and analogies with interacting diffusion

Objective

Let F be graph function. Our goal is to minimize F over large graphs.

Can perform gradient descent on finite graphs/symmetric matrices.

Exploiting the symmetry

- Think of the problem as an optimization problem on the space of 'graphons'.
- Hope-Pray-Prove! The gradient descent process on finite graphs/symmetric matrices converge to a limit as $n \to \infty$.
- Can we show that the limit of GD is a gradient flow on graphons?
- Can one construct natural Markov processes on graphs that converge to the gradient flow?

イロト イポト イヨト イヨト

Plan and analogies with interacting diffusion

Objective

Let F be graph function. Our goal is to minimize F over large graphs.

Can perform gradient descent on finite graphs/symmetric matrices.

Exploiting the symmetry

- Think of the problem as an optimization problem on the space of 'graphons'.
- Hope-Pray-Prove! The gradient descent process on finite graphs/symmetric matrices converge to a limit as $n \to \infty$.
- Can we show that the limit of GD is a gradient flow on graphons?
- Can one construct natural Markov processes on graphs that converge to the gradient flow?

Graphons vs Wasserstein space

- Given a graph on n vertices is akin to particle ensemble
- Think of every edge as a *particle* and edge-weights are evolving

イロト イポト イヨト イヨト

Setup and Results

Optimization on graphons

February 2, 2023 11 / 23

Graphons

Kernels \mathcal{W}

A kernel is a measurable function $W \colon [0,1]^2 \to [-1,1]$ such that W(x,y) = W(y,x).

• Adjacency matrix \equiv kernel.

$$\frac{1}{16} \begin{bmatrix} -16 & -15 & -12 & -7 \\ -15 & -14 & -11 & 1 \\ -12 & -11 & -6 & 4 \\ -7 & 1 & 4 & 9 \end{bmatrix}$$

Symmetric matrix A

Kernel representation of ${\cal A}$

イロト イヨト イヨト イヨト

February 2, 2023

æ

Graphons

Kernels \mathcal{W}

A kernel is a measurable function $W: [0,1]^2 \to [-1,1]$ such that W(x,y) = W(y,x).

• Adjacency matrix \equiv kernel.

Symmetric matrix A

Kernel representation of A

- Identify adjacency matrix/kernel up to 'permutations'.
- Identify $W_1 \cong W_2$ if one can be obtained by 'relabeling' the vertices of the other, i.e.,

 $W_1(\varphi(x),\varphi(y)) = W_2(x,y),$ where $\phi: [0,1] \to [0,1]$ is a measure preserving map.

12 / 23

Setup

Graphons

Graphons
$$\widehat{\mathcal{W}}$$
 (Lovász & Szegedy, 2006): $\widehat{\mathcal{W}} := \mathcal{W}/\cong$

Cut metric :: Weak convergence

- Cut metric, δ_{\Box} , metrizes graph convergence.
- $(\widehat{\mathcal{W}}, \delta_{\Box})$ is compact.

¹Gradient flows on graphons - Oh, Pal, Somani, Tripathi, 2021

²Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré, 2008 ・ロト ・日ト ・ヨト ・ヨト

Setup

Graphons

Graphons
$$\widehat{\mathcal{W}}$$
 (Lovász & Szegedy, 2006): $\widehat{\mathcal{W}} := \mathcal{W}/\cong$

Cut metric :: Weak convergence

- Cut metric, δ_{\Box} , metrizes graph convergence.
- $(\widehat{\mathcal{W}}, \delta_{\Box})$ is compact.

Invariant L^2 metric $\delta_2 ::$ 2-Wasserstein metric \mathbb{W}_2

- Stronger than the cut metric (i.e., δ_{\Box} convergence $\Rightarrow \delta_2$ convergence).
- Gromov-Wasserstein distance between $([0, 1], \text{Leb}, W_1)$ and $([0, 1], \text{Leb}, W_2)$.

¹Gradient flows on graphons - Oh, Pal, Somani, Tripathi, 2021

²Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré, 2008 ・ロト ・日ト ・ヨト ・ヨト

Setup

Graphons

Graphons
$$\widehat{\mathcal{W}}$$
 (Lovász & Szegedy, 2006): $\widehat{\mathcal{W}} := \mathcal{W}/\cong$

Cut metric :: Weak convergence

- Cut metric, δ_{\Box} , metrizes graph convergence.
- $(\widehat{\mathcal{W}}, \delta_{\Box})$ is compact.

Invariant L^2 metric $\delta_2 ::$ 2-Wasserstein metric \mathbb{W}_2

- Stronger than the cut metric (i.e., δ_{\Box} convergence $\Rightarrow \delta_2$ convergence).
- Gromov-Wasserstein distance between $([0, 1], \text{Leb}, W_1)$ and $([0, 1], \text{Leb}, W_2)$.

We show¹

- The metric δ_2 is **geodesic** (just like \mathbb{W}_2). Geodesic convexity on $(\widehat{\mathcal{W}}, \delta_2)$.
- Notion of 'gradient' on $(\widehat{\mathcal{W}}, \delta_2)$ called 'Frechét-like derivative'!
- Construction of 'gradient flows' on $(\widehat{\mathcal{W}}, \delta_2)^2$.

¹Gradient flows on graphons - Oh, Pal, Somani, Tripathi, 2021

²Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré, ・ロト ・回ト ・ヨト ・ヨト 2008

Results

Existence of gradient flow on Graphons

Theorem [OPST '21]

If $R: \widehat{\mathcal{W}} \to \mathbb{R}$

- has a Fréchet-like derivative,
- is geodesically semiconvex in δ_2 ,

then starting from any $W_0 \in \widehat{\mathcal{W}}, \exists !$ gradient flow curve $(W_t)_{t \in \mathbb{R}_+}$ for R

イロト イヨト イヨト イヨト

February 2, 2023

æ

Results

Existence of gradient flow on Graphons

Theorem [OPST '21]

If $R: \widehat{\mathcal{W}} \to \mathbb{R}$

- has a Fréchet-like derivative.
- is geodesically semiconvex in δ_2 ,

then starting from any $W_0 \in \widehat{\mathcal{W}}$, $\exists!$ gradient flow curve $(W_t)_{t \in \mathbb{R}_+}$ for R satisfying

$$W_t := W_0 - \int_0^t DR(W_s) \,\mathrm{d}s, \qquad t \in \mathbb{R}_+,$$

inside $\widehat{\mathcal{W}}$. At the boundary $\{-1,1\}$ of $\widehat{\mathcal{W}}$, add constraints to contain it.

Scaling limits of GD [OPST '21 + HOPST '22]

Euclidean GD/SGD of R_n over $n \times n$ symmetric matrices, converges to the 'gradient flow' of R on the metric space of graphons.

イロト イヨト イヨト イヨト

February 2, 2023

Example

For $p \in [0, 1]$, define the entropy function $I(p) = p \log(p) + (1 - p) \log(p)$. In the following we assume $W : [0, 1]^2 \rightarrow [0, 1]$. For a kernel W, define

$$I(W) \coloneqq \iint I(W(x,y)) \,\mathrm{d}x \,\mathrm{d}y.$$

Gradient flow of $F(W) = t(K_3, W) + \beta I(W)$

$$W_t(x,y) = W_0(x,y) - 3\int_0^t \int W_s(x,z)W_s(z,y)\,\mathrm{d}z\,\mathrm{d}s - \beta\int_0^t \log\left(\frac{W_s(x,y)}{1 - W_s(x,y)}\,\mathrm{d}s\right) \,.$$

イロト イヨト イヨト イヨト

February 2, 2023

æ

Example

For $p \in [0, 1]$, define the entropy function $I(p) = p \log(p) + (1 - p) \log(p)$. In the following we assume $W : [0, 1]^2 \rightarrow [0, 1]$. For a kernel W, define

$$I(W) \coloneqq \iint I(W(x,y)) \,\mathrm{d}x \,\mathrm{d}y.$$

Gradient flow of $F(W) = t(K_3, W) + \beta I(W)$

$$W_t(x,y) = W_0(x,y) - 3\int_0^t \int W_s(x,z)W_s(z,y)\,\mathrm{d}z\,\mathrm{d}s - \beta\int_0^t \log\left(\frac{W_s(x,y)}{1 - W_s(x,y)}\,\mathrm{d}s\right) \,.$$

Finite dimensional gradient descent

$$W_t^{(n)}(i,j) = W_0^{(n)} - 3n^2 \int_0^t \frac{1}{n^3} \left(W_s^{(n)} \right)^2 (i,j) \,\mathrm{d}s - \beta \int_0^t \log \left(\frac{W_s^{(n)}(i,j)}{1 - W_s^{(n)}(i,j)} \right) \,.$$

イロト イヨト イヨト イヨト

Markov Chain converging to gradient flow

Suppose we want to construct a Markov process on graphs that converges to the gradient flow of triangle density $t(K_3, \cdot)$.

February 2, 2023

Markov Chain converging to gradient flow

Suppose we want to construct a Markov process on graphs that converges to the gradient flow of triangle density $t(K_3, \cdot)$.

- Start with $G_{n,0}$.
- At each time step τ_n , all the edges in $G_{n,k}$ flip (or don't flip according to following rule).
 - If $\{i, j\}$ is not an edge in $G_{n,k}$ then $\{i, j\}$ remains a non-edge in $G_{n,k+1}$.
 - If $\{i, j\}$ is an edge in $G_{n,k}$ then drop it with probability

$$p_{ij} = \tau_n \frac{\Delta_{ij}}{n} \; ,$$

where $\Delta_{ij} =$ Number of triangles with containing $\{i, j\}$.

・ロト ・日ト ・ヨト ・ヨト

For $n \in \mathbb{N}$, let $\nabla R_n(A) = \mathbb{E}_{\xi} [\nabla \ell_n(A; \xi)]$ for $A \in \mathcal{M}_n$.

SGD

Given the k-th iterate $W_k^{(n)} \in \mathcal{M}_n$, sample ξ ,

$$W_{k+1}^{(n)} = W_k^{(n)} - \tau_n \cdot n^2 \underbrace{\nabla \ell_n(W_k^{(n)};\xi)}_{\substack{\text{stochastic Euclidean} \\ \text{gradient}}}$$

Optimization on graphons

February 2, 2023 17 / 23

臣

(日) (四) (王) (王) (王)

For
$$n \in \mathbb{N}$$
, let $\nabla R_n(A) = \mathbb{E}_{\xi}[\nabla \ell_n(A;\xi)]$ for $A \in \mathcal{M}_n$.

Noisy SGD

Given the k-th iterate
$$W_k^{(n)} \in \mathcal{M}_n$$
, sample ξ ,
 $W_{k+1}^{(n)} = W_k^{(n)} - \tau_n \cdot n^2 \underbrace{\nabla \ell_n(W_k^{(n)};\xi)}_{\text{stochastic Euclidean}} + \tau_n^{1/2} \cdot \underbrace{\xi_k \sim N(0,I)}_{\text{independent added noise}}$

February 2, 2023

æ

For $n \in \mathbb{N}$, let $\nabla R_n(A) = \mathbb{E}_{\xi}[\nabla \ell_n(A;\xi)]$ for $A \in \mathcal{M}_n$.

Noisy SGD

Given the k-th iterate $W_k^{(n)} \in \mathcal{M}_n$, sample ξ ,

$$W_{k+1}^{(n)} = P\left(W_k^{(n)} - \tau_n \cdot n^2 \underbrace{\nabla \ell_n(W_k^{(n)};\xi)}_{\text{stochastic Euclidean}} + \tau_n^{1/2} \cdot \underbrace{\xi_k \sim N(0,I)}_{\text{independent added noise}}\right)$$

メロト メロト メヨト メヨト

February 2, 2023

臣

For
$$n \in \mathbb{N}$$
, let $\nabla R_n(A) = \mathbb{E}_{\xi}[\nabla \ell_n(A;\xi)]$ for $A \in \mathcal{M}_n$.

Noisy SGD

Given the k-th iterate $W_k^{(n)} \in \mathcal{M}_n$, sample ξ ,

If $W_0^{(n)} \xrightarrow{\delta_2} W_0$, and $\tau_n \to 0$, as $n \to \infty$, then a.s.

$$W^{(n)} \stackrel{\delta_{\square}}{\rightrightarrows} \Gamma, \quad \text{as } n \to \infty,$$

where $\Gamma: t \mapsto \Gamma(t)$ is the curve described by the McKean-Vlasov equation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへで

McKean-Vlasov equation

- Let (Ω, F, ℙ) be a probability space with a Brownian Motion B(t), and (U,V) ^{i.i.d.} Uni[0, 1].
- Consider the process $(X(t), \Gamma(t))$ such that

Existence + uniqueness when DR is L^2 Lipschitz - [HOPST '22] $\leftarrow \square \triangleright \land (\square \triangleright \land (\square \triangleright \land (\square \bullet) (\square \bullet) : (\square \bullet) : (\square \bullet) : (\square \bullet) : (\square \bullet$

February 2, 2023

McKean-Vlasov equation

- Let (Ω, F, ℙ) be a probability space with a Brownian Motion B(t), and (U, V) ^{i.i.d.} Uni[0, 1].
- Consider the process $(X(t), \Gamma(t))$ such that on $\{U = u, V = v\}$,

$$dX(t) = -(DR)(\Gamma(t))(u,v) dt + dB(t) + \frac{dL^{-}(t) - dL^{+}(t)}{constrain in [-1, 1]}$$
(McKean-Vlasov)

 $\Gamma(t)(x,y) = \mathbb{E}[X(t) \mid (U,V) = (x,y)], \quad \forall \ (x,y) \in [0,1]^2.$

February 2, 2023

McKean-Vlasov equation

- Let (Ω, F, P) be a probability space with a Brownian Motion B(t), and (U, V) ^{i.i.d.} Uni[0, 1].
- Consider the process $(X(t), \Gamma(t))$ such that on $\{U = u, V = v\}$,

$$dX(t) = -(DR)(\Gamma(t))(u,v) dt + dB(t) \underbrace{+ dL^{-}(t) - dL^{+}(t)}_{\text{constrain in } [-1,1]}, \quad \text{(McKean-Vlasov)}$$
$$\Gamma(t)(x,y) = \mathbb{E}[X(t) \mid (U,V) = (x,y)], \quad \forall \ (x,y) \in [0,1]^{2}.$$

Expected to arise as limit of large number of graph dynamics:

- "Mean-field interaction": For any edge-weight, the effect of all others edge-weights on its evolution is invariant under vertex relabeling.
- "Propagation of chaos": Every edge-weight between a set of m randomly chosen vertices evolves independently in the limit.

Existence + uniqueness when DR is L^2 Lipschitz - [HOPST '22] $\langle \Box \rangle \land \langle \overline{c} \rangle \land \langle$

February 2, 2023

Proof Sketch:Scaling limits of gradient flow

- We show that the cut topology is *consistent* with the invariant L^2 metric δ_2^3 .
- At every $n \in \mathbb{N}$, consider *implicit Euler update* rule with positive a step size τ_n .
- The limit is obtained by showing Γ -convergence.

February 2, 2023

Proof Sketch: Scaling limits of noisy SGD

- The existence of the deterministic limit Γ is obtained as a limit of a Picard iterations.
- Independently sample a sequence of vertices.
 - From SGD iterations $W^{(n)}(t)$, sample a random $m \times m$ submatrix process $W^{(n)}(t)[m]$.
 - Couple and get matrix processes $X(t)[m] \& \Gamma(t)[m]$ from McKean-Vlasov type SDEs.
- Use concentration estimates to show that as curves,

$$W^{(n)}[m] \stackrel{\delta_{\square}}{\rightrightarrows} \Gamma, \quad \text{as} \quad n \to \infty, \text{ and } m \to \infty, \quad \text{a.s.}$$

We recover the scaling limit of SGD (without added noise) as a corollary.

イロト イヨト イヨト イヨト

February 2, 2023

Future directions-I

Cut convergence gives limited information

- What can we infer if $W_n \to W$ in cut topology?
- We can infer the convergence of $t(F, W_n) \to t(F, W)$ for any finite graphs.
- Unfortunately, we can't say $\iint W_n(x,y)^2 \, \mathrm{d}x \, \mathrm{d}y \to \iint W(x,y)^2 \, \mathrm{d}x \, \mathrm{d}y$.

(日) (四) (三) (三) (三)

Future directions-I

Cut convergence gives limited information

- What can we infer if $W_n \to W$ in cut topology?
- We can infer the convergence of $t(F, W_n) \to t(F, W)$ for any finite graphs.
- Unfortunately, we can't say $\iint W_n(x,y)^2 \, \mathrm{d}x \, \mathrm{d}y \to \iint W(x,y)^2 \, \mathrm{d}x \, \mathrm{d}y$.

Cut topology is not good for weighted graphs

- Let G(n,p) be the Erdös-Rènyi graph.
- $G(n,p) \to W_p \equiv p.$
- Let K(n, p) be the complete weighted graph with edge weights p.
- $K(n,p) \to W_p$.
- We would want to say G(n,p) converges to an infinite exchangeable array $G(\infty,p)$ with i.i.d. Bernoulli random variables.
- And, K(n, p) converges to an infinite (deterministic) array $K(\infty, p)$.
- Stronger but natural topology? Measure-valued graphons? In progress.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Simulations

- Turán's theorem: The *n*-vertex triangle-free graph with the maximum number of edges is a complete bipartite graph.
- Q. Can we recover this theorem through an optimization problem on graphons?

$$F(W) = t(K_3, W) - \frac{1}{10}t(K_2, W)$$
.

(a) GD
$$(n = 7)$$
 (b) GD $(n = 32)$ (c) GD $(n = 256)$

Thank you!

Thank you!

ArXiv version⁴: https://arxiv.org/abs/2210.00422

⁴Stochastic optimization on matrices and a graphon McKean-Vlasov limit - Harchaoui, Oh, Pal, Somani, Tripathi, 2022