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Introduction Interacting particle systems

Prologue: Interacting particle systems

Problem

n
For n € N, consider Ry (z) = 7%2 > %(:c, — xj)z, for x € R™. Minimize Ry.
3,j=1
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e R, is permutation invariant and hence a function R of empirical measure
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Prologue: Interacting particle systems

Problem

For n € N, consider Ry, (z) = n% %(CE — xj)z, for x € R™. Minimize Ry.
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)

NG

Can perform GD to solve - particle gradient flow:

dX(t) = —nd;Rn (X (t))dt

:—*Z(X () dt Vi€ [n].

o Ry is permutation invariant and hence a function R of empirical measure defined by

)= f %(m —y)?dp(z) dp(y) = Var[g] .

RxR
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Introduction Interacting particle systems

Prologue: Interacting particle systems

Problem

For n € N, consider Ry, (z) = n% %(CE — xj)z, for x € R™. Minimize Ry.

1

)

NG

o Can perform GD to solve - particle diffusion:
dX;(t) = —nd;Rn(X(t))dt + dB;(¢)
:——Z(X @ydt+asie el

o Ry is permutation invariant and hence a function R of empirical measure defined by

)= f %(m —y)?dp(z) dp(y) = Var[g] .

RxR
o Itis known that 1307 6y = pi™) 222 gy
o t > py is the gradient flow of R: P2(R) — R on the Wasserstein space (P2(R), W2)

Otpt = =V, (R + Ent)(pt)
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Interacting particle systems

Summary
Particle gradient flow/diffusion ‘Wasserstein gradient flow
Objective: Rp: R™ — R Objective: R: P2(R) —» R
dX;(t) = —n 8 Rn (X (t)) dt + d B;(t) Bept = — Vi, (R + Ent)(pr)
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Summary
Particle gradient flow/diffusion ‘Wasserstein gradient flow
Objective: Rp: R™ — R Objective: R: P2(R) —» R
dXi(t) = —n 0 Rn (X (1)) dt + dB;(t) dipt = =V, (R + Ent)(pr)

Meta Theorem(s)

o Particle system gradient descent approximates the Wasserstein gradient flow of measures

n
Pt~ n! Z(SXi(t).
=1

o Propagation of Chaos: As n grows, any k randomly chosen particles become
independent.
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Summary
Particle gradient flow/diffusion ‘Wasserstein gradient flow
Objective: Rp: R™ — R Objective: R: P2(R) —» R
dXi(t) = —n 0 Rn (X (1)) dt + dB;(t) dipt = =V, (R + Ent)(pr)

Meta Theorem(s)

o Particle system gradient descent approximates the Wasserstein gradient flow of measures

n
Pt~ n! Z(SXi(t).
=1

o Propagation of Chaos: As n grows, any k randomly chosen particles become
independent.

o The dynamics of a randomly chosen particle in is described by McKean-Vlasov equation

dX(t) = b(X(t),ut)dt+dBt, He = Law(Xt)
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Intro

ion Interacting particle systems

An application: Two layer Neural Networks (NNs)

Figure: A 2-layer NN.
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Figure: A 2-layer NN.

Minimization Problem(s):

Ra(©) =E[Y?] + 23 V) + 5 30 UG.0))




Figure: A 2-layer NN.

Minimization Problem(s):

D 2 1 &
Rn(©) =E[Y?] + ;ZV(@i) *— > U, 6;)
i=1 i,j=1

R(p) =E[Y?] +2 / V(0)dp() + ﬂ U(61,02) dp(61) dp(62).
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Introduction Interacting particle systems

Two layer NN continued...

Minimization Problem(s):

2 & 1<
Rn(©) =E[Y?] + =3 V(0:)+ — > U6;,6))
i=1 i,5=1

R(p) = E[Y?] +2/V(9) dp(6) + [[ U(61,62)dp(61) dp(02).

o Consider SGD on R, with step size 7.
o Let pn(t) =2 37 | 6, (1), for t =krn, keN.
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Introduction Interacting particle systems

Two layer NN continued...

Minimization Problem(s):

2 & 1<
Rn(©) =E[Y?] + =3 V(0:)+ — > U6;,6))
i=1 i,5=1

R(p) = E[Y?] +2/V(9) dp(6) + [[ U(61,62)dp(61) dp(02).

o Consider SGD on R, with step size 7.
o Let pp(t) = % Yis1 00,1y, for t = kmn, k€N

Theorem [MMN 18]

If 5, (0) D720y, then pn () ﬁ—l} p(t), uniformly for ¢ € [0,T],
Tn—0

where p: t — p(t) solves
dtp(t) = —Vw, R(p(t),  p(0) = po-
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Introduction Interacting particle systems

Two layer NN continued...

Minimization Problem(s):

2 & 1<
Rn(©) =E[Y?] + =3 V(0:)+ — > U6;,6))
i=1 i,5=1

R(p) = E[Y?] +2/V(9) dp(6) + [[ U(61,62)dp(61) dp(02).

o Consider SGD on R, with step size 7.
o Let pp(t) = % Yis1 00,1y, for t = kmn, k€N

Theorem [MMN 18]

If pr(0) "7 po, then  pn(t) —2 p(t),  uniformly for t€ [0, T,
Tn—0

where p: t — p(t) solves
dtp(t) = —Vw, R(p(t),  p(0) = po-

And, inf  R,(©) 2= inf R(p).
oc(r4)™ pEP(R)
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Optimization on Graphons

A new world

Objective

Study large scale optimization problems over dense weighted unlabeled graphs. J
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Optimization on Graphons

A new world

Objective

Study large scale optimization problems over dense weighted unlabeled graphs.

Let G = (V, E) be a graph and let A be an adjacency matrix of G.

0o 1 1 1 e 0O 0 1 1
°0° tore = GO ooy
1 0 1 0 e 1 1 1 0

Figure: Symmetry in unlabeled graphs.
Examples
o Edge density:  h_(G) = (# of edges in G)/(3).
o Triangle density: ha(G) = (# of As in G)/(3)-
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Optimization on Graphons

A new world

Objective

Study large scale optimization problems over dense weighted unlabeled graphs. J

Let G = (V, E) be a graph and let A be an adjacency matrix of G.

0o 1 1 1 e 0O 0 1 1
allﬁ tore = GO ooy
1 0 1 0 e 1 1 1 0

Figure: Symmetry in unlabeled graphs.
Examples
o Edge density:  h_(G) = (# of edges in G)/(3).
o Triangle density: ha(G) = (# of As in G)/(3)-

Invariant functions

A function F': M, — R is said to be invariant function/graph function if F(A) = F(A?) for
all permutations o € Sp, and A € My, where A7 (i, j) = A(o (i), 0(j))-
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Introduction Optimization on Graphons

General plan and analogies

Let F' be graph function. Our goal is to minimize F' over large graphs.

Can perform gradient descent on finite graphs/symmetric matrices.

Exploiting the symmetry
o Think of the problem as an optimization problem on the space of ‘graphons’.

e Hope-Pray-Prove! The gradient descent process on finite graphs/symmetric matrices
converge to a limit as n — oo.
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Introduction Optimization on Graphons

General plan and analogies

Let F' be graph function. Our goal is to minimize F' over large graphs.

Can perform gradient descent on finite graphs/symmetric matrices.

Exploiting the symmetry
o Think of the problem as an optimization problem on the space of ‘graphons’.

e Hope-Pray-Prove! The gradient descent process on finite graphs/symmetric matrices
converge to a limit as n — oo.

o Can we show that the limit of GD is a gradient flow on graphons?

Graphons vs Wasserstein space

o Given a graph on n vertices is akin to particle ensemble

e Think of every edge as a particle and edge-weights are evolving
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Setup and Results
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up and Results [ESISONS

Graphons

Kernels W

A kernel is a measurable function W: [0,1]2 — [—1, 1] such that W (z,y) = W (y, ).

o Adjacency matrix = kernel.

1

—16 —15 —12 -7
1 |-15 —14 -11
16 |-12 —-11 -6

-7 1 4

© =

-05

Symmetric matrix A

Kernel representation of A
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Setup and Results [ESISONS

Graphons

Kernels W

A kernel is a measurable function W: [0,1]2 — [—1, 1] such that W (z,y) = W (y, ).

o Adjacency matrix = kernel.

1 1
o7 05
—16 —15 —12 -7
1 |-15 —-14 —11 1 = 05 0
16 |—-12 —-11 -6 4
-7 1 4 9 025 ~05
”1! 0.25 0.5 0.75 1

Symmetric matrix A
Kernel representation of A
o Identify adjacency matrix/kernel up to ‘permutations’.

o Identify W = Ws if one can be obtained by ‘relabeling’ the vertices of the other, i.e.,
Wl(@("”)?@(y)) = WZ(x»y)v T,y € [07 1}'
e
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Graphons

Graphons W (Lovész & Szegedy, 2006): W = W/ J

Cut metric :: Weak convergence
o Cut metric, 6, metrizes graph convergence.

° (17\/\, é;) is compact.

1Gradient flows on graphons - Oh, Pal, Somani, Tripathi, 2021

2Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré,
2008
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Setup and Results [ESISONS

Graphons

Graphons W (Lovész & Szegedy, 2006): W = W/ J

Cut metric :: Weak convergence
o Cut metric, 6, metrizes graph convergence.

° (17\/\, é;) is compact.

Invariant L2 metric do :: 2-Wasserstein metric Wy

o Stronger than the cut metric (i.e., 6 convergence # d2 convergence).
o Gromov-Wasserstein distance between ([0, 1], Leb, W) and ([0, 1], Leb, W>).

We show!
e The metric 2 is geodesic (just like W3). Geodesic convexity on (17\/\, 82).

o Notion of ‘gradient’ on (17\/\, d2) called ‘Frechét-like derivative’!

e Construction of ‘gradient flows’ on (W, 82)2.

1Gradient flows on graphons - Oh, Pal, Somani, Tripathi, 2021
2Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré,
2008
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Setup and Results [SECENIeS

Existence of gradient flow on Graphons

Theorem [OPST ’21]
IfR: W —R

o has a Fréchet-like derivative,
o is geodesically semiconvex in d2,

then starting from any Wy € W, 3! gradient flow curve (Wt)te]lh

for R
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Setup and Bl Results

Existence of gradient flow on Graphons

Theorem [OPST ’21]

IfR: W—R
o has a Fréchet-like derivative,
o is geodesically semiconvex in d2,

then starting from any Wy € W, 3! gradient flow curve (Wt)te]lh for R satisfying
t
Wy == Wy —/ DR(WS) ds, te Ry,
0

inside W. At the boundary {—1,1} of W, add constraints to contain it.

Scaling limits of GD [OPST 21 + HOPST ’22]

Euclidean GD/SGD of R, over n X n symmetric matrices, converges to the ‘gradient flow’ of
R on the metric space of graphons.

y
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Scaling limit of Noisy SGD

Scaling limit of Noisy SGD

For n € N, let Rp(A) = E¢[bn(A;6)] for A € M.

SGD

Given the k-th iterate Wén) € My, sample &,
W =W~ rn? Ve (W)

stochastic Euclidean
gradient
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Setup and Bl Scaling limit of Noisy SGD

Scaling limit of Noisy SGD

For n € N, let Rp(A) = E¢[bn(A;6)] for A € Mj.

Noisy SGD
Given the k-th iterate W,S") € M, sample &,

W =W~ men? VaW™ + w7 N
stochastic Euclidean added noise
gradient
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ST NIl Scaling limit of Noisy SGD

Scaling limit of Noisy SGD

For n € N, let Ry (A) = E¢[ln(4;6)] for A € Mp.

Noisy SGD

Given the k-th iterate W,gn) € My, sample &,

Wéi)1=P(W,£") — men? VLY + m Nid)
—_—
stochastic Euclidean added noise

gradient
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ST NIl Scaling limit of Noisy SGD

Scaling limit of Noisy SGD

For n € N, let Ry (A) = E¢[ln(4;6)] for A € Mp.

Noisy SGD

Given the k-th iterate W,gn) € My, sample &,

W,ii)lzp(w,g’” - men? VLW + m/? N(O,id)

stochastic Euclidean added noise
gradient

If Wén) LN Wo, and 7, — 0, as n — oo, then a.s.

dul
w =T, as n — 0o,

where I': ¢ — T'(¢) is the curve described by the McKean-Vlasov equation.
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ST NIl Scaling limit of Noisy SGD

McKean-Vlasov equation

o Let (Q2, F,P) be a probability space with a Brownian Motion B(t), and
U, v) "&" Unilo, 1].

o Consider the process (X (t),I'(¢)) such that

Existence + uniqueness when DR is L? Lipschitz - [HOPST ’22]
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McKean-Vlasov equation

o Let (Q2, F,P) be a probability space with a Brownian Motion B(t), and
U, v) "&" Unilo, 1].

o Consider the process (X (t),'(t)) such that on {U =,V = v},

dX(t) = —(DR)(T())(u,v)dt +dB(t) +dL™(t) —dLT(t),
—_—
constrain in [—1, 1] (MCKean-Vlasov)

L(t)(z,y) =E[X(1) | (U, V) = (z,9)], ¥ (z,9) €[0,1)*.

Existence + uniqueness when DR is L? Lipschitz - [HOPST ’22]
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Scaling limit of Noisy SGD

Setup and

McKean-Vlasov equation

o Let (Q2, F,P) be a probability space with a Brownian Motion B(t), and

(U, v) " Unifo, 1]

o Consider the process (X (t),'(t)) such that on {U =,V = v},

dX(t) = —(DR)(T'(t))(u,v)dt +dB(t) +dL™(t) —dL"(t),
—_—
constrain in [—1, 1] (MCKean-Vlasov)

L(t)(z,y) =E[X(1) | (U, V) = (z,9)], ¥ (z,9) €[0,1)*.

Expected to arise as limit of large number of graph dynamics:

“Mean-field interaction”: For any cdge-weight, the effect of all others edge-weights on its
evolution is invariant under vertex relabeling.

“Propagation of chaos”: Every edge-weight between a set of m randomly chosen vertices
evolves independently in the limit.

Existence + uniqueness when DR is L? Lipschitz - [HOPST ’22]

N S .ling limits of SGD over large networks

February 2, 2023 14 / 17



Future directions

Future directions

e Stronger but natural topology? Measure-valued graphons? In progress.

o Extension to Deep NNs. Use a graphon for each layer (bipartite graph), respecting all
joint layerwise permutation symmetries - In progress.

Te+1

ny

UTES

Figure: A b-layer NN.

e How does data distribution propagate across depth? Control theory, optimal transport -
Open.
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Simulations

Propagation of Chaos experiments

o SGD training of a 5 layer deep feedforward ReLU networks. o: z — max{0,z}.
o Test joint independence of elements in random 2 X 2 submatrices.

o Null hypothesis: All the 4 random variables are jointly independent

CIFAR0 b =5 CIFAR10 b =5 CIFAR10 b =5

CIFAR10 b =5

(a) Dataset: CIFAR10. x-axis: n, y-axis: p-value with interquartile range.

o For small n (< 300): The p value is < 0.05 = reject null hypothesis.

o Monotonic increase in p value as n increases, in all layers.

I  Scaling limits of SGD over large networks February 2, 2023 16 / 17



Thank you!

Thank you!

ArXiv version®: https://arxiv.org/abs/2210.00422

3Stochastic optimization on matrices and a graphon McKean-Vlasov limit - Harchaoui, Oh, Pal, Somani,
Tripathi, 2022
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