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Introduction Interacting particle systems

Prologue: Interacting particle systems

Problem

For n ∈ N, consider Rn(x) :=
1
n2

n∑
i,j=1

1
2
(xi − xj)

2, for x ∈ Rn. Minimize Rn.

Can perform GD to solve -

dXi(t) = −n∂ iRn(X(t)) dt

+ dBi(t)

= −
1

n

n∑
j=1

(Xi(t)−Xj(t)) dt

+ dBi(t)

∀ i ∈ [n].

Rn is permutation invariant and hence a function R of empirical measure defined by

R(ρ) :=
x

R×R

1

2
(x− y)2 dρ(x) dρ(y) = Var[ρ] .

It is known that 1
n

∑n
i=1 δXi(t)

=: ρ̂
(n)
t

n→∞−−−−→ ρt.

t 7→ ρt is the gradient flow of R : P2(R) → R on the Wasserstein space (P2(R),W2)

∂tρt = −∇W2
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Introduction Interacting particle systems

Summary

Particle gradient flow/diffusion

Objective: Rn : Rn → R

dXi(t) = −n∂ iRn(X(t)) dt+ dBi(t)

Wasserstein gradient flow

Objective: R : P2(R) → R

∂ tρt = −∇W2
(R+ Ent)(ρt)

Meta Theorem(s)

Particle system gradient descent approximates the Wasserstein gradient flow of measures

ρt ≈ n−1
n∑

i=1

δXi(t)
.

Propagation of Chaos: As n grows, any k randomly chosen particles become
independent.

The dynamics of a randomly chosen particle in is described by McKean-Vlasov equation

dX(t) = b(X(t), µt) dt+ dBt, µt = Law(Xt)
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Introduction Interacting particle systems

An application: Two layer Neural Networks (NNs)

ŷ(x0)

x0

x1

d

n

Figure: A 2-layer NN.

Θ = {θ1, θ2, . . . , θn},

ρn =
1

n

n∑
i=1

δθi ,

ŷΘ(x0) =
1

n

n∑
i=1

σ(⟨θi, x0⟩),

ŷ(x0) =

∫
σ(⟨θ, x0⟩)ρn(dθ),

Rn(Θ) = E(X,Y )∼µ

[
(Y − ŷΘ(X))2

]
.

Minimization Problem(s):

Rn(Θ) = E
[
Y 2
]
+

2

n

n∑
i=1

V (θi) +
1

n2

n∑
i,j=1

U(θi, θj)

R(ρ) := E
[
Y 2
]
+ 2

∫
V (θ) dρ(θ) +

x
U(θ1, θ2) dρ(θ1) dρ(θ2).
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Introduction Interacting particle systems

Two layer NN continued...

Minimization Problem(s):

Rn(Θ) = E
[
Y 2
]
+

2

n

n∑
i=1

V (θi) +
1

n2

n∑
i,j=1

U(θi, θj)

R(ρ) := E
[
Y 2
]
+ 2

∫
V (θ) dρ(θ) +

x
U(θ1, θ2) dρ(θ1) dρ(θ2).

Consider SGD on Rn with step size τn.

Let ρ̂n(t) =
1
n

∑n
i=1 δθi(t), for t = kτn, k ∈ N.

Theorem [MMN ’18]

If ρ̂n(0)
n→∞−−−−→ ρ0, then ρ̂n(t)

W2−−−−→
n→∞
τn→0

ρ(t), uniformly for t ∈ [0, T ],

where ρ : t 7→ ρ(t) solves

∂ tρ(t) = −∇W2
R(ρ(t)), ρ(0) = ρ0.

And, inf
Θ∈(Rd)n

Rn(Θ)
n→∞−−−−→ inf

ρ∈P(Rd)
R(ρ).
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Introduction Optimization on Graphons

A new world

Objective

Study large scale optimization problems over dense weighted unlabeled graphs.

Let G = (V,E) be a graph and let A be an adjacency matrix of G.

≡

1

2

3

4


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

 ∼=

3

2

4

1


0 0 1 1
0 0 1 1
1 1 0 1
1 1 1 0


Figure: Symmetry in unlabeled graphs.

Examples

Edge density: h−(G) = (# of edges in G)/
(n
2

)
.

Triangle density: h△(G) = (# of △s in G)/
(n
3

)
.

Invariant functions

A function F : Mn → R is said to be invariant function/graph function if F (A) = F (Aσ) for
all permutations σ ∈ Sn and A ∈ Mn, where Aσ(i, j) = A(σ(i), σ(j)).
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Introduction Optimization on Graphons

General plan and analogies

Let F be graph function. Our goal is to minimize F over large graphs.

Can perform gradient descent on finite graphs/symmetric matrices.

Exploiting the symmetry

Think of the problem as an optimization problem on the space of ‘graphons’.

Hope-Pray-Prove! The gradient descent process on finite graphs/symmetric matrices
converge to a limit as n → ∞.

Can we show that the limit of GD is a gradient flow on graphons?

Graphons vs Wasserstein space

Given a graph on n vertices is akin to particle ensemble

Think of every edge as a particle and edge-weights are evolving
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Setup and Results

Setup and Results

Scaling limits of SGD over large networks February 2, 2023 9 / 17



Setup and Results Setup

Graphons

Kernels W

A kernel is a measurable function W : [0, 1]2 → [−1, 1] such that W (x, y) = W (y, x).

Adjacency matrix ≡ kernel.

1

16


−16 −15 −12 −7
−15 −14 −11 1
−12 −11 −6 4
−7 1 4 9



Symmetric matrix A
0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

x

y

−1

−0.5

0

0.5

1

Kernel representation of A

Identify adjacency matrix/kernel up to ‘permutations’.

Identify W1
∼= W2 if one can be obtained by ‘relabeling’ the vertices of the other, i.e.,

W1(φ(x), φ(y)) = W2(x, y), x, y ∈ [0, 1].
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Setup and Results Setup

Graphons

Graphons Ŵ (Lovász & Szegedy, 2006): Ŵ := W/∼=

Cut metric :: Weak convergence

Cut metric, δ□, metrizes graph convergence.

(Ŵ, δ□) is compact.

Invariant L2 metric δ2 :: 2-Wasserstein metric W2

Stronger than the cut metric (i.e., δ□ convergence ⇏ δ2 convergence).

Gromov-Wasserstein distance between ([0, 1],Leb,W1) and ([0, 1],Leb,W2).

We show1

The metric δ2 is geodesic (just like W2). Geodesic convexity on (Ŵ, δ2).

Notion of ‘gradient’ on (Ŵ, δ2) called ‘Frechét-like derivative’ !

Construction of ‘gradient flows’ on (Ŵ, δ2)2.

1Gradient flows on graphons - Oh, Pal, Somani, Tripathi, 2021
2Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré,

2008
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(Ŵ, δ□) is compact.

Invariant L2 metric δ2 :: 2-Wasserstein metric W2

Stronger than the cut metric (i.e., δ□ convergence ⇏ δ2 convergence).

Gromov-Wasserstein distance between ([0, 1],Leb,W1) and ([0, 1],Leb,W2).

We show1

The metric δ2 is geodesic (just like W2). Geodesic convexity on (Ŵ, δ2).

Notion of ‘gradient’ on (Ŵ, δ2) called ‘Frechét-like derivative’ !

Construction of ‘gradient flows’ on (Ŵ, δ2)2.
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Setup and Results Results

Existence of gradient flow on Graphons

Theorem [OPST ’21]

If R : Ŵ → R
has a Fréchet-like derivative,

is geodesically semiconvex in δ2,

then starting from any W0 ∈ Ŵ, ∃! gradient flow curve (Wt)t∈R+
for R

satisfying

Wt := W0 −
∫ t

0
DR(Ws) ds, t ∈ R+,

inside Ŵ. At the boundary {−1, 1} of Ŵ, add constraints to contain it.

Scaling limits of GD [OPST ’21 + HOPST ’22]

Euclidean GD/SGD of Rn over n× n symmetric matrices, converges to the ‘gradient flow’ of
R on the metric space of graphons.
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Setup and Results Scaling limit of Noisy SGD

Scaling limit of Noisy SGD

For n ∈ N, let Rn(A) = Eξ[ℓn(A; ξ)] for A ∈ Mn.

SGD

Given the k-th iterate W
(n)
k ∈ Mn, sample ξ,

W
(n)
k+1 = W

(n)
k − τn · n2 ∇ℓn(W

(n)
k ; ξ)︸ ︷︷ ︸

stochastic Euclidean
gradient

+ τ
1/2
n · N(0, id)︸ ︷︷ ︸

added noise

If W
(n)
0

δ2−−→ W0, and τn → 0, as n → ∞, then a.s.

W (n)
δ□
⇒ Γ, as n → ∞,

where Γ: t 7→ Γ(t) is the curve described by the McKean-Vlasov equation.
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Setup and Results Scaling limit of Noisy SGD

McKean-Vlasov equation

Let (Ω,F ,P) be a probability space with a Brownian Motion B(t), and

(U, V )
i.i.d.∼ Uni[0, 1].

Consider the process (X(t),Γ(t)) such that

on {U = u, V = v},

dX(t) = −(DR)(Γ(t))(u, v) dt+ dB(t) +dL−(t)− dL+(t)︸ ︷︷ ︸
constrain in [−1, 1]

,

Γ(t)(x, y) = E[X(t) | (U, V ) = (x, y)], ∀ (x, y) ∈ [0, 1]2.

(McKean-Vlasov)

Expected to arise as limit of large number of graph dynamics:

“Mean-field interaction”: For any edge-weight, the effect of all others edge-weights on its
evolution is invariant under vertex relabeling.

“Propagation of chaos”: Every edge-weight between a set of m randomly chosen vertices
evolves independently in the limit.

Existence + uniqueness when DR is L2 Lipschitz - [HOPST ’22]
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Future directions

Future directions

Stronger but natural topology? Measure-valued graphons? In progress.

Extension to Deep NNs. Use a graphon for each layer (bipartite graph), respecting all
joint layerwise permutation symmetries - In progress.

· · · · · · ŷ(x)

x0 = x

x1

x`

x`+1

xb

n0 = d

n1

n`

n`+1

nb

Figure: A b-layer NN.

How does data distribution propagate across depth? Control theory, optimal transport -
Open.
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Simulations

Propagation of Chaos experiments

SGD training of a 5 layer deep feedforward ReLU networks. σ : x 7→ max{0, x}.
Test joint independence of elements in random 2× 2 submatrices.

Null hypothesis: All the 4 random variables are jointly independent.

(a) Dataset: CIFAR10. x-axis: n, y-axis: p-value with interquartile range.

For small n (≲ 300): The p value is < 0.05 =⇒ reject null hypothesis.

Monotonic increase in p value as n increases, in all layers.
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Thank you

Thank you!

Thank you!

ArXiv version3: https://arxiv.org/abs/2210.00422

3Stochastic optimization on matrices and a graphon McKean-Vlasov limit - Harchaoui, Oh, Pal, Somani,
Tripathi, 2022
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