Scaling limits of SGD over large networks

Zaid Harchaoui^{1,3}, Sewoong Oh^{1,4}, Soumik Pal², Raghav Somani¹ and Raghav Tripathi²

 $^1{\rm UW}$ CSE, $^2{\rm UW}$ Math, $^3{\rm UW}$ Statistics & $^4{\rm Google}$

February 2, 2023

Scaling limits of SGD over large networks

February 2, 2023

- Introduction: Interacting particle system
- 2 layer Neural Networks
- Optimization on graphons
- Future directions and Deep Neural Networks

- 12

イロト イヨト イヨト イヨト

Problem

For
$$n \in \mathbb{N}$$
, consider $R_n(x) := \frac{1}{n^2} \sum_{i,j=1}^n \frac{1}{2} (x_i - x_j)^2$, for $x \in \mathbb{R}^n$. Minimize R_n .

Scaling limits of SGD over large networks

<ロ> (四) (四) (三) (三) (三) (三)

Problem

For
$$n \in \mathbb{N}$$
, consider $R_n(x) \coloneqq \frac{1}{n^2} \sum_{i,j=1}^n \frac{1}{2} (x_i - x_j)^2$, for $x \in \mathbb{R}^n$. Minimize R_n .

• Can perform GD to solve - particle gradient flow:

$$dX_i(t) = -n \partial_i R_n(X(t)) dt$$

= $-\frac{1}{n} \sum_{j=1}^n (X_i(t) - X_j(t)) dt$ $\forall i \in [n]$

Problem

For
$$n \in \mathbb{N}$$
, consider $R_n(x) := \frac{1}{n^2} \sum_{i,j=1}^n \frac{1}{2} (x_i - x_j)^2$, for $x \in \mathbb{R}^n$. Minimize R_n .

• Can perform GD to solve - particle gradient flow:

$$\begin{split} \mathrm{d} X_i(t) &= -n \,\partial_i R_n(X(t)) \,\mathrm{d} t \\ &= -\frac{1}{n} \sum_{j=1}^n (X_i(t) - X_j(t)) \,\mathrm{d} t \end{split} \qquad \forall \ i \in [n] \end{split}$$

• R_n is permutation invariant and hence a function R of empirical measure

イロト イヨト イヨト イヨト

æ

Problem

For
$$n \in \mathbb{N}$$
, consider $R_n(x) := \frac{1}{n^2} \sum_{i,j=1}^n \frac{1}{2} (x_i - x_j)^2$, for $x \in \mathbb{R}^n$. Minimize R_n .

• Can perform GD to solve - particle gradient flow:

$$\begin{split} \mathrm{d} X_i(t) &= -n \,\partial_i R_n(X(t)) \,\mathrm{d} t \\ &= -\frac{1}{n} \sum_{j=1}^n (X_i(t) - X_j(t)) \,\mathrm{d} t \end{split} \qquad \forall \ i \in [n] \end{split}$$

• R_n is permutation invariant and hence a function R of empirical measure defined by

$$R(\rho) \coloneqq \iint_{\mathbb{R} \times \mathbb{R}} \frac{1}{2} (x - y)^2 \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y) = \operatorname{Var}[\rho] \;.$$

Scaling limits of SGD over large networks

イロト イヨト イヨト イヨト

February 2, 2023

æ

Problem

For
$$n \in \mathbb{N}$$
, consider $R_n(x) := \frac{1}{n^2} \sum_{i,j=1}^n \frac{1}{2} (x_i - x_j)^2$, for $x \in \mathbb{R}^n$. Minimize R_n .

• Can perform GD to solve - particle gradient flow:

$$\begin{split} \mathrm{d} X_i(t) &= -n \,\partial_i R_n(X(t)) \,\mathrm{d} t \\ &= -\frac{1}{n} \sum_{j=1}^n (X_i(t) - X_j(t)) \,\mathrm{d} t \end{split} \qquad \forall \ i \in [n] \end{split}$$

• R_n is permutation invariant and hence a function R of empirical measure defined by

$$R(\rho) \coloneqq \iint_{\mathbb{R} \times \mathbb{R}} \frac{1}{2} (x - y)^2 \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y) = \operatorname{Var}[\rho] \;.$$

- It is known that $\frac{1}{n}\sum_{i=1}^n \delta_{X_i(t)} =: \hat{\rho}_t^{(n)} \xrightarrow{n \to \infty} \rho_t.$
- $t \mapsto \rho_t$ is the gradient flow of $R: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$ on the Wasserstein space $(\mathcal{P}_2(\mathbb{R}), \mathbb{W}_2)$

$$\partial_t \rho_t = -\nabla_{\mathbb{W}_2} R(\rho_t)$$

Scaling limits of SGD over large networks

February 2, 2023 3 / 17

イロト イロト イヨト イヨト 三日

Problem

For
$$n \in \mathbb{N}$$
, consider $R_n(x) \coloneqq \frac{1}{n^2} \sum_{i,j=1}^n \frac{1}{2} (x_i - x_j)^2$, for $x \in \mathbb{R}^n$. Minimize R_n .

• Can perform GD to solve - particle diffusion:

$$dX_i(t) = -n \partial_i R_n(X(t)) dt + dB_i(t)$$

= $-\frac{1}{n} \sum_{j=1}^n (X_i(t) - X_j(t)) dt + dB_i(t)$ $\forall i \in [n]$

• R_n is permutation invariant and hence a function R of empirical measure defined by

$$R(\rho) \coloneqq \iint_{\mathbb{R} \times \mathbb{R}} \frac{1}{2} (x - y)^2 \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y) = \operatorname{Var}[\rho] \;.$$

• It is known that $\frac{1}{n}\sum_{i=1}^{n}\delta_{X_{i}(t)} =: \hat{\rho}_{t}^{(n)} \xrightarrow{n \to \infty} \rho_{t}.$

• $t \mapsto \rho_t$ is the gradient flow of $R: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$ on the Wasserstein space $(\mathcal{P}_2(\mathbb{R}), \mathbb{W}_2)$

$$\partial_t \rho_t = -\nabla_{\mathbb{W}_2} (R + \operatorname{Ent})(\rho_t)$$

イロト イロト イヨト イヨト 三日

Particle gradient flow/diffusion

Objective: $R_n : \mathbb{R}^n \to \mathbb{R}$

 $dX_i(t) = -n \partial_i R_n(X(t)) dt + dB_i(t)$

Wasserstein gradient flow

Objective: $R: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$

 $\partial_t \rho_t = -\nabla_{\mathbb{W}_2}(R + \operatorname{Ent})(\rho_t)$

Particle gradient flow/diffusion

Objective: $R_n : \mathbb{R}^n \to \mathbb{R}$

$$\mathrm{d}X_{i}(t) = -n\,\partial_{i}R_{n}(X(t))\,\mathrm{d}t + \mathrm{d}B_{i}(t)$$

Wasserstein gradient flow

Objective: $R: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$

 $\partial_t \rho_t = -\nabla_{\mathbb{W}_2}(R + \operatorname{Ent})(\rho_t)$

イロト イヨト イヨト イヨト

Meta Theorem(s)

• Particle system gradient descent approximates the Wasserstein gradient flow of measures

Particle gradient flow/diffusion

Objective: $R_n : \mathbb{R}^n \to \mathbb{R}$

$$\mathrm{d}X_{i}(t) = -n\,\partial_{i}R_{n}(X(t))\,\mathrm{d}t + \mathrm{d}B_{i}(t)$$

Wasserstein gradient flow

Objective: $R: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$

 $\partial_t \rho_t = -\nabla_{\mathbb{W}_2}(R + \operatorname{Ent})(\rho_t)$

イロト イヨト イヨト イヨト

Meta Theorem(s)

• Particle system gradient descent approximates the Wasserstein gradient flow of measures

$$\rho_t \approx n^{-1} \sum_{i=1}^n \delta_{X_i(t)}.$$

Scaling limits of SGD over large networks

February 2, 2023 4 / 17

Particle gradient flow/diffusion

Objective: $R_n : \mathbb{R}^n \to \mathbb{R}$

$$\mathrm{d}X_{i}(t) = -n\,\partial_{i}R_{n}(X(t))\,\mathrm{d}t + \mathrm{d}B_{i}(t)$$

Wasserstein gradient flow

Objective: $R: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$

 $\partial_t \rho_t = -\nabla_{\mathbb{W}_2}(R + \operatorname{Ent})(\rho_t)$

イロト イヨト イヨト イヨト

February 2, 2023

4 / 17

Meta Theorem(s)

• Particle system gradient descent approximates the Wasserstein gradient flow of measures

$$\rho_t \approx n^{-1} \sum_{i=1}^n \delta_{X_i(t)}.$$

• **Propagation of Chaos**: As n grows, any k randomly chosen particles become independent.

Particle gradient flow/diffusion

Objective: $R_n : \mathbb{R}^n \to \mathbb{R}$

$$dX_i(t) = -n \partial_i R_n(X(t)) dt + dB_i(t)$$

Wasserstein gradient flow

Objective: $R: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$

$$\partial_t \rho_t = -\nabla_{\mathbb{W}_2} (R + \operatorname{Ent})(\rho_t)$$

イロト イヨト イヨト イヨト

Meta Theorem(s)

• Particle system gradient descent approximates the Wasserstein gradient flow of measures

$$\rho_t \approx n^{-1} \sum_{i=1}^n \delta_{X_i(t)}.$$

- **Propagation of Chaos**: As n grows, any k randomly chosen particles become independent.
- The dynamics of a randomly chosen particle in is described by McKean-Vlasov equation

$$dX(t) = b(X(t), \mu_t) dt + dB_t, \qquad \mu_t = Law(X_t)$$

An application: Two layer Neural Networks (NNs)

$$\Theta = \{\theta_1, \theta_2, \ldots, \theta_n\},\$$

$$\hat{y}_{\Theta}(x_0) = \frac{1}{n} \sum_{i=1}^n \sigma(\langle \theta_i, x_0 \rangle),$$

$$R_n(\Theta) = \mathbb{E}_{(X,Y)\sim\mu} \Big[(Y - \hat{y}_{\Theta}(X))^2 \Big].$$

Figure: A 2-layer NN.

イロト イヨト イヨト イヨト

æ

An application: Two layer Neural Networks (NNs)

Figure: A 2-layer NN.

 $\Theta = \{\theta_1, \theta_2, \dots, \theta_n\},\$

$$\hat{\mathbf{y}}_{\Theta}(x_0) = \frac{1}{n} \sum_{i=1}^n \sigma(\langle \theta_i, x_0 \rangle),$$

$$B_{\sigma}(\Theta) = \mathbb{E}_{(X,Y)} \quad \left[(Y - \hat{y}_{\Theta}(X))^2 \right]$$

$$R_n(\Theta) = \mathbb{E}_{(X,Y)\sim\mu} \left[(Y - \hat{y}_{\Theta}(X))^2 \right].$$

Minimization Problem(s):

$$R_n(\Theta) = \mathbb{E}[Y^2] + \frac{2}{n} \sum_{i=1}^n V(\theta_i) + \frac{1}{n^2} \sum_{i,j=1}^n U(\theta_i, \theta_j)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

An application: Two layer Neural Networks (NNs)

Figure: A 2-layer NN.

$$\Theta = \{\theta_1, \theta_2, \dots, \theta_n\}, \quad \rho_n = \frac{1}{n} \sum_{i=1}^n \delta_{\theta_i},$$
$$\hat{y}_{\Theta}(x_0) = \frac{1}{n} \sum_{i=1}^n \sigma(\langle \theta_i, x_0 \rangle), \quad \hat{y}(x_0) = \int \sigma(\langle \theta, x_0 \rangle) \rho_n(\mathrm{d}\theta),$$
$$R_n(\Theta) = \mathbb{E}_{(X,Y) \sim \mu} \Big[(Y - \hat{y}_{\Theta}(X))^2 \Big].$$

Minimization Problem(s):

$$R_n(\Theta) = \mathbb{E}[Y^2] + \frac{2}{n} \sum_{i=1}^n V(\theta_i) + \frac{1}{n^2} \sum_{i,j=1}^n U(\theta_i, \theta_j)$$
$$R(\rho) \coloneqq \mathbb{E}[Y^2] + 2 \int V(\theta) \,\mathrm{d}\rho(\theta) + \iint U(\theta_1, \theta_2) \,\mathrm{d}\rho(\theta_1) \,\mathrm{d}\rho(\theta_2).$$

æ

イロト イヨト イヨト イヨト

Two layer NN continued...

Minimization Problem(s):

$$R_n(\Theta) = \mathbb{E}[Y^2] + \frac{2}{n} \sum_{i=1}^n V(\theta_i) + \frac{1}{n^2} \sum_{i,j=1}^n U(\theta_i, \theta_j)$$
$$R(\rho) \coloneqq \mathbb{E}[Y^2] + 2 \int V(\theta) \,\mathrm{d}\rho(\theta) + \iint U(\theta_1, \theta_2) \,\mathrm{d}\rho(\theta_1) \,\mathrm{d}\rho(\theta_2).$$

- Consider SGD on R_n with step size τ_n .
- Let $\hat{\rho}_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{\theta_i(t)}$, for $t = k \tau_n$, $k \in \mathbb{N}$.

Two layer NN continued...

Minimization Problem(s):

$$R_n(\Theta) = \mathbb{E}[Y^2] + \frac{2}{n} \sum_{i=1}^n V(\theta_i) + \frac{1}{n^2} \sum_{i,j=1}^n U(\theta_i, \theta_j)$$
$$R(\rho) \coloneqq \mathbb{E}[Y^2] + 2 \int V(\theta) \,\mathrm{d}\rho(\theta) + \iint U(\theta_1, \theta_2) \,\mathrm{d}\rho(\theta_1) \,\mathrm{d}\rho(\theta_2).$$

• Consider SGD on R_n with step size τ_n .

• Let
$$\hat{\rho}_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{\theta_i(t)}$$
, for $t = k\tau_n$, $k \in \mathbb{N}$.

Theorem [MMN '18]

If
$$\hat{\rho}_n(0) \xrightarrow{n \to \infty} \rho_0$$
, then $\hat{\rho}_n(t) \xrightarrow[n \to \infty]{m \to \infty} \rho(t)$, uniformly for $t \in [0, T]$,
 $\tau_n \to 0$

where $\rho: t \mapsto \rho(t)$ solves

$$\partial_t \rho(t) = -\nabla_{\mathbb{W}_2} R(\rho(t)), \qquad \rho(0) = \rho_0.$$

Scaling limits of SGD over large networks

February 2, 2023 6 / 17

æ

・ロト ・四ト ・ヨト ・ヨト

Two layer NN continued...

Minimization Problem(s):

$$R_n(\Theta) = \mathbb{E}[Y^2] + \frac{2}{n} \sum_{i=1}^n V(\theta_i) + \frac{1}{n^2} \sum_{i,j=1}^n U(\theta_i, \theta_j)$$
$$R(\rho) \coloneqq \mathbb{E}[Y^2] + 2 \int V(\theta) \, \mathrm{d}\rho(\theta) + \iint U(\theta_1, \theta_2) \, \mathrm{d}\rho(\theta_1) \, \mathrm{d}\rho(\theta_2).$$

• Consider SGD on R_n with step size τ_n .

• Let
$$\hat{\rho}_n(t) = \frac{1}{n} \sum_{i=1}^n \delta_{\theta_i(t)}$$
, for $t = k\tau_n$, $k \in \mathbb{N}$.

Theorem [MMN '18]

If
$$\hat{\rho}_n(0) \xrightarrow{n \to \infty} \rho_0$$
, then $\hat{\rho}_n(t) \xrightarrow[n \to \infty]{n \to \infty} \rho(t)$, uniformly for $t \in [0, T]$,
 $\tau_n \to 0$

where $\rho: t \mapsto \rho(t)$ solves

$$\partial_t \rho(t) = -\nabla_{\mathbb{W}_2} R(\rho(t)), \qquad \rho(0) = \rho_0.$$

And,
$$\inf_{\Theta \in (\mathbb{R}^d)^n} R_n(\Theta) \xrightarrow{n \to \infty} \inf_{\rho \in \mathcal{P}(\mathbb{R}^d)} R(\rho).$$

æ

イロト イヨト イヨト イヨト

A new world

Objective

Study large scale optimization problems over dense weighted unlabeled graphs.

7 / 17

< □ > < @ > < 注 > < 注 > ... 注

A new world

Objective

Study large scale optimization problems over dense weighted unlabeled graphs.

Let G = (V, E) be a graph and let A be an adjacency matrix of G.

Figure: Symmetry in unlabeled graphs.

Examples

- Edge density: $h_{-}(G) = (\# \text{ of edges in } G)/\binom{n}{2}$.
- Triangle density: $h_{\triangle}(G) = (\# \text{ of } \triangle s \text{ in } G)/\binom{n}{3}$.

イロト イヨト イヨト

February 2, 2023

A new world

Objective

Study large scale optimization problems over dense weighted unlabeled graphs.

Let G = (V, E) be a graph and let A be an adjacency matrix of G.

Figure: Symmetry in unlabeled graphs.

Examples

- Edge density: $h_{-}(G) = (\# \text{ of edges in } G)/\binom{n}{2}$.
- Triangle density: $h_{\triangle}(G) = (\# \text{ of } \triangle s \text{ in } G) / {n \choose 3}$.

Invariant functions

A function $F: \mathcal{M}_n \to \mathbb{R}$ is said to be *invariant function/graph function* if $F(A) = F(A^{\sigma})$ for all permutations $\sigma \in S_n$ and $A \in \mathcal{M}_n$, where $A^{\sigma}(i, j) = A(\sigma(i), \sigma(j))$.

イロト イヨト イヨト イヨト

General plan and analogies

Let F be graph function. Our goal is to minimize F over large graphs.

Can perform gradient descent on finite graphs/symmetric matrices.

Exploiting the symmetry

- Think of the problem as an optimization problem on the space of 'graphons'.
- Hope-Pray-Prove! The gradient descent process on finite graphs/symmetric matrices converge to a limit as $n \to \infty$.

General plan and analogies

Let F be graph function. Our goal is to minimize F over large graphs.

Can perform gradient descent on finite graphs/symmetric matrices.

Exploiting the symmetry

- Think of the problem as an optimization problem on the space of 'graphons'.
- Hope-Pray-Prove! The gradient descent process on finite graphs/symmetric matrices converge to a limit as $n \to \infty$.
- Can we show that the limit of GD is a gradient flow on graphons?

General plan and analogies

Let F be graph function. Our goal is to minimize F over large graphs.

Can perform gradient descent on finite graphs/symmetric matrices.

Exploiting the symmetry

- Think of the problem as an optimization problem on the space of 'graphons'.
- Hope-Pray-Prove! The gradient descent process on finite graphs/symmetric matrices converge to a limit as $n \to \infty$.
- Can we show that the limit of GD is a gradient flow on graphons?

Graphons vs Wasserstein space

- Given a graph on n vertices is akin to particle ensemble
- Think of every edge as a *particle* and edge-weights are evolving

(D) (A) (A) (A)

February 2, 2023

Setup and Results

Scaling limits of SGD over large networks

February 2, 2023

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Graphons

Kernels \mathcal{W}

A kernel is a measurable function $W \colon [0,1]^2 \to [-1,1]$ such that W(x,y) = W(y,x).

• Adjacency matrix \equiv kernel.

$$\frac{1}{16} \begin{bmatrix} -16 & -15 & -12 & -7 \\ -15 & -14 & -11 & 1 \\ -12 & -11 & -6 & 4 \\ -7 & 1 & 4 & 9 \end{bmatrix}$$

Symmetric matrix A

Kernel representation of A

イロト イヨト イヨト イヨト

æ

Graphons

Kernels \mathcal{W}

A kernel is a measurable function $W: [0,1]^2 \to [-1,1]$ such that W(x,y) = W(y,x).

• Adjacency matrix \equiv kernel.

≥ 0.5 0.25 0.75

Symmetric matrix A

Kernel representation of A

イロト イヨト イヨト イヨト

- Identify adjacency matrix/kernel up to 'permutations'.
- Identify $W_1 \cong W_2$ if one can be obtained by 'relabeling' the vertices of the other, i.e.,

$$W_1(\varphi(x),\varphi(y)) = W_2(x,y), \qquad x,y \in [0,1].$$

Setup

Graphons

Graphons
$$\widehat{\mathcal{W}}$$
 (Lovász & Szegedy, 2006): $\widehat{\mathcal{W}} := \mathcal{W}/\cong$

Cut metric :: Weak convergence

- Cut metric, δ_{\Box} , metrizes graph convergence.
- $(\widehat{\mathcal{W}}, \delta_{\Box})$ is compact.

¹Gradient flows on graphons - Oh, Pal, Somani, Tripathi, 2021

²Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré, 2008 ・ロト ・回ト ・ヨト ・ヨト

Setup

Graphons

Graphons
$$\widehat{\mathcal{W}}$$
 (Lovász & Szegedy, 2006): $\widehat{\mathcal{W}} := \mathcal{W}/\cong$

Cut metric :: Weak convergence

- Cut metric, δ_{\Box} , metrizes graph convergence.
- $(\widehat{\mathcal{W}}, \delta_{\Box})$ is compact.

Invariant L^2 metric $\delta_2 ::$ 2-Wasserstein metric \mathbb{W}_2

- Stronger than the cut metric (i.e., δ_{\Box} convergence $\Rightarrow \delta_2$ convergence).
- Gromov-Wasserstein distance between $([0, 1], \text{Leb}, W_1)$ and $([0, 1], \text{Leb}, W_2)$.

¹Gradient flows on graphons - Oh, Pal, Somani, Tripathi, 2021

²Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré, 2008 (日) (四) (日) (日) (日)

Setup

Graphons

Graphons
$$\widehat{\mathcal{W}}$$
 (Lovász & Szegedy, 2006): $\widehat{\mathcal{W}} := \mathcal{W}/\cong$

Cut metric :: Weak convergence

- Cut metric, δ_{\Box} , metrizes graph convergence.
- $(\widehat{\mathcal{W}}, \delta_{\Box})$ is compact.

Invariant L^2 metric $\delta_2 ::$ 2-Wasserstein metric \mathbb{W}_2

- Stronger than the cut metric (i.e., δ_{\Box} convergence $\Rightarrow \delta_2$ convergence).
- Gromov-Wasserstein distance between $([0, 1], \text{Leb}, W_1)$ and $([0, 1], \text{Leb}, W_2)$.

We $show^1$

- The metric δ_2 is **geodesic** (just like \mathbb{W}_2). Geodesic convexity on $(\widehat{\mathcal{W}}, \delta_2)$.
- Notion of 'gradient' on $(\widehat{\mathcal{W}}, \delta_2)$ called 'Frechét-like derivative'!
- Construction of 'gradient flows' on $(\widehat{\mathcal{W}}, \delta_2)^2$.

¹Gradient flows on graphons - Oh, Pal, Somani, Tripathi, 2021

²Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré, ・ロト ・回ト ・ヨト ・ヨト 2008

Results

Existence of gradient flow on Graphons

Theorem [OPST '21]

If $R: \widehat{\mathcal{W}} \to \mathbb{R}$

- has a Fréchet-like derivative,
- is geodesically semiconvex in δ_2 ,

then starting from any $W_0 \in \widehat{\mathcal{W}}, \exists !$ gradient flow curve $(W_t)_{t \in \mathbb{R}_+}$ for R

イロト イヨト イヨト イヨト

Results

Existence of gradient flow on Graphons

Theorem [OPST '21]

If $R: \widehat{\mathcal{W}} \to \mathbb{R}$

- has a Fréchet-like derivative.
- is geodesically semiconvex in δ_2 ,

then starting from any $W_0 \in \widehat{\mathcal{W}}$, $\exists!$ gradient flow curve $(W_t)_{t \in \mathbb{R}_+}$ for R satisfying

$$W_t := W_0 - \int_0^t DR(W_s) \,\mathrm{d}s, \qquad t \in \mathbb{R}_+,$$

inside $\widehat{\mathcal{W}}$. At the boundary $\{-1,1\}$ of $\widehat{\mathcal{W}}$, add constraints to contain it.

Scaling limits of GD [OPST '21 + HOPST '22]

Euclidean GD/SGD of R_n over $n \times n$ symmetric matrices, converges to the 'gradient flow' of R on the metric space of graphons.

・ロト ・回ト ・ヨト ・ヨト

For $n \in \mathbb{N}$, let $R_n(A) = \mathbb{E}_{\xi}[\ell_n(A;\xi)]$ for $A \in \mathcal{M}_n$.

SGD

Given the k-th iterate $W_k^{(n)} \in \mathcal{M}_n$, sample ξ ,

$$W_{k+1}^{(n)} = W_k^{(n)} - \tau_n \cdot n^2 \quad \underbrace{\nabla \ell_n(W_k^{(n)};\xi)}_{k}$$

stochastic Euclidean gradient

イロト イヨト イヨト イヨト

For $n \in \mathbb{N}$, let $R_n(A) = \mathbb{E}_{\xi}[\ell_n(A;\xi)]$ for $A \in \mathcal{M}_n$.

Noisy SGD

Given the k-th iterate $W_k^{(n)} \in \mathcal{M}_n$, sample ξ ,

$$W_{k+1}^{(n)} = W_k^{(n)} - \tau_n \cdot n^2 \underbrace{\nabla \ell_n(W_k^{(n)};\xi)}_{\text{stochastic Euclidean}} + \tau_n^{1/2} \cdot \underbrace{N(0, \text{id})}_{\text{added noise}}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

For $n \in \mathbb{N}$, let $R_n(A) = \mathbb{E}_{\xi}[\ell_n(A;\xi)]$ for $A \in \mathcal{M}_n$.

Noisy SGD

Given the k-th iterate $W_k^{(n)} \in \mathcal{M}_n$, sample ξ ,

$$W_{k+1}^{(n)} = P\left(W_k^{(n)} - \tau_n \cdot n^2 \underbrace{\nabla \ell_n(W_k^{(n)};\xi)}_{\text{stochastic Euclidean}} + \tau_n^{1/2} \cdot \underbrace{N(0, \text{id})}_{\text{added noise}}\right)$$

For $n \in \mathbb{N}$, let $R_n(A) = \mathbb{E}_{\xi}[\ell_n(A;\xi)]$ for $A \in \mathcal{M}_n$.

Noisy SGD

Given the k-th iterate $W_k^{(n)} \in \mathcal{M}_n$, sample ξ ,

If $W_0^{(n)} \xrightarrow{\delta_2} W_0$, and $\tau_n \to 0$, as $n \to \infty$, then a.s.

$$W^{(n)} \stackrel{\delta_{\square}}{\rightrightarrows} \Gamma, \quad \text{as } n \to \infty,$$

where $\Gamma: t \mapsto \Gamma(t)$ is the curve described by the McKean-Vlasov equation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへで

McKean-Vlasov equation

- Let (Ω, F, ℙ) be a probability space with a Brownian Motion B(t), and (U,V) ^{i.i.d.} Uni[0, 1].
- Consider the process $(X(t), \Gamma(t))$ such that

February 2, 2023

McKean-Vlasov equation

- Let (Ω, F, ℙ) be a probability space with a Brownian Motion B(t), and (U, V) ^{i.i.d.} Uni[0, 1].
- Consider the process $(X(t), \Gamma(t))$ such that on $\{U = u, V = v\}$,

$$dX(t) = -(DR)(\Gamma(t))(u, v) dt + dB(t) + dL^{-}(t) - dL^{+}(t),$$
(McKean-Vlasov)

 $\Gamma(t)(x,y) = \mathbb{E}[X(t) \mid (U,V) = (x,y)], \quad \forall \ (x,y) \in [0,1]^2.$

February 2, 2023

McKean-Vlasov equation

- Let (Ω, F, P) be a probability space with a Brownian Motion B(t), and (U, V) ^{i.i.d.} Uni[0, 1].
- Consider the process $(X(t), \Gamma(t))$ such that on $\{U = u, V = v\}$,

$$dX(t) = -(DR)(\Gamma(t))(u,v) dt + dB(t) \underbrace{+ dL^{-}(t) - dL^{+}(t)}_{\text{constrain in } [-1,1]}, \quad \text{(McKean-Vlasov)}$$
$$\Gamma(t)(x,y) = \mathbb{E}[X(t) \mid (U,V) = (x,y)], \quad \forall \ (x,y) \in [0,1]^{2}.$$

Expected to arise as limit of large number of graph dynamics:

- "Mean-field interaction": For any edge-weight, the effect of all others edge-weights on its evolution is invariant under vertex relabeling.
- "Propagation of chaos": Every edge-weight between a set of m randomly chosen vertices evolves independently in the limit.

Existence + uniqueness when DR is L^2 Lipschitz - [HOPST '22] $\langle \Box \rangle \land \langle \overline{c} \rangle \land \langle$

February 2, 2023

Future directions

Future directions

- Stronger but natural topology? Measure-valued graphons? In progress.
- Extension to **Deep NNs**. Use a graphon for each layer (bipartite graph), respecting all joint layerwise permutation symmetries In progress.

Figure: A *b*-layer NN.

• How does data distribution propagate across depth? Control theory, optimal transport - Open.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→

Simulations

Propagation of Chaos experiments

- SGD training of a 5 layer deep feedforward ReLU networks.
- Test joint independence of elements in random 2×2 submatrices.
- Null hypothesis: All the 4 random variables are jointly independent.

(a) Dataset: CIFAR10. x-axis: n, y-axis: p-value with interquartile range.

- For small $n (\leq 300)$: The p value is $< 0.05 \implies$ reject null hypothesis.
- Monotonic increase in *p* value as *n* increases, in all layers.

 $\sigma \colon x \mapsto \max\{0, x\}.$

Thank you!

Thank you!

ArXiv version³: https://arxiv.org/abs/2210.00422

February 2, 2023

³Stochastic optimization on matrices and a graphon McKean-Vlasov limit - Harchaoui, Oh, Pal, Somani, Tripathi, 2022