Scaling limits of SGD over large networks

Zaid Harchaoui ${ }^{1,3}$, Sewoong $\mathrm{Oh}^{1,4}$, Soumik Pal^{2}, Raghav Somani ${ }^{1}$ and Raghav Tripathi ${ }^{2}$

${ }^{1}$ UW CSE, ${ }^{2}$ UW Math, ${ }^{3}$ UW Statistics \& ${ }^{4}$ Google

February 2, 2023

Plan

- Introduction: Interacting particle system
- 2 layer Neural Networks
- Optimization on graphons
- Future directions and Deep Neural Networks

Prologue: Interacting particle systems

Problem

For $n \in \mathbb{N}$, consider $R_{n}(x):=\frac{1}{n^{2}} \sum_{i, j=1}^{n} \frac{1}{2}\left(x_{i}-x_{j}\right)^{2}$, for $x \in \mathbb{R}^{n}$. Minimize R_{n}.

Prologue: Interacting particle systems

Problem

For $n \in \mathbb{N}$, consider $R_{n}(x):=\frac{1}{n^{2}} \sum_{i, j=1}^{n} \frac{1}{2}\left(x_{i}-x_{j}\right)^{2}$, for $x \in \mathbb{R}^{n}$. Minimize R_{n}.

- Can perform GD to solve - particle gradient flow:

$$
\begin{array}{rlr}
\mathrm{d} X_{i}(t) & =-n \partial_{i} R_{n}(X(t)) \mathrm{d} t & \forall i \in[n] .
\end{array}
$$

Prologue: Interacting particle systems

Problem

For $n \in \mathbb{N}$, consider $R_{n}(x):=\frac{1}{n^{2}} \sum_{i, j=1}^{n} \frac{1}{2}\left(x_{i}-x_{j}\right)^{2}$, for $x \in \mathbb{R}^{n}$. Minimize R_{n}.

- Can perform GD to solve - particle gradient flow:

$$
\begin{array}{rlr}
\mathrm{d} X_{i}(t) & =-n \partial_{i} R_{n}(X(t)) \mathrm{d} t & \forall i \in[n] .
\end{array}
$$

- R_{n} is permutation invariant and hence a function R of empirical measure

Prologue: Interacting particle systems

Problem

For $n \in \mathbb{N}$, consider $R_{n}(x):=\frac{1}{n^{2}} \sum_{i, j=1}^{n} \frac{1}{2}\left(x_{i}-x_{j}\right)^{2}$, for $x \in \mathbb{R}^{n}$. Minimize R_{n}.

- Can perform GD to solve - particle gradient flow:

$$
\begin{array}{rlr}
\mathrm{d} X_{i}(t) & =-n \partial_{i} R_{n}(X(t)) \mathrm{d} t & \forall i \in[n] .
\end{array}
$$

- R_{n} is permutation invariant and hence a function R of empirical measure defined by

$$
R(\rho):=\iint_{\mathbb{R} \times \mathbb{R}} \frac{1}{2}(x-y)^{2} \mathrm{~d} \rho(x) \mathrm{d} \rho(y)=\operatorname{Var}[\rho] .
$$

Prologue: Interacting particle systems

Problem

For $n \in \mathbb{N}$, consider $R_{n}(x):=\frac{1}{n^{2}} \sum_{i, j=1}^{n} \frac{1}{2}\left(x_{i}-x_{j}\right)^{2}$, for $x \in \mathbb{R}^{n}$. Minimize R_{n}.

- Can perform GD to solve - particle gradient flow:

$$
\begin{array}{rlr}
\mathrm{d} X_{i}(t) & =-n \partial_{i} R_{n}(X(t)) \mathrm{d} t & \forall i \in[n] \\
& =-\frac{1}{n} \sum_{j=1}^{n}\left(X_{i}(t)-X_{j}(t)\right) \mathrm{d} t & \forall i=
\end{array}
$$

- R_{n} is permutation invariant and hence a function R of empirical measure defined by

$$
R(\rho):=\iint_{\mathbb{R} \times \mathbb{R}} \frac{1}{2}(x-y)^{2} \mathrm{~d} \rho(x) \mathrm{d} \rho(y)=\operatorname{Var}[\rho] .
$$

- It is known that

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}(t)}=: \hat{\rho}_{t}^{(n)} \xrightarrow{n \rightarrow \infty} \rho_{t} .
$$

- $t \mapsto \rho_{t}$ is the gradient flow of $R: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ on the Wasserstein space $\left(\mathcal{P}_{2}(\mathbb{R}), \mathbb{W}_{2}\right)$

$$
\partial_{t} \rho_{t}=-\nabla_{\mathbb{W}_{2}} R\left(\rho_{t}\right)
$$

Prologue: Interacting particle systems

Problem

For $n \in \mathbb{N}$, consider $R_{n}(x):=\frac{1}{n^{2}} \sum_{i, j=1}^{n} \frac{1}{2}\left(x_{i}-x_{j}\right)^{2}$, for $x \in \mathbb{R}^{n}$. Minimize R_{n}.

- Can perform GD to solve - particle diffusion:

$$
\begin{aligned}
\mathrm{d} X_{i}(t) & =-n \partial_{i} R_{n}(X(t)) \mathrm{d} t+\mathrm{d} B_{i}(t) \\
& =-\frac{1}{n} \sum_{j=1}^{n}\left(X_{i}(t)-X_{j}(t)\right) \mathrm{d} t+\mathrm{d} B_{i}(t) \quad \forall i \in[n]
\end{aligned}
$$

- R_{n} is permutation invariant and hence a function R of empirical measure defined by

$$
R(\rho):=\iint_{\mathbb{R} \times \mathbb{R}} \frac{1}{2}(x-y)^{2} \mathrm{~d} \rho(x) \mathrm{d} \rho(y)=\operatorname{Var}[\rho] .
$$

- It is known that

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}(t)}=: \hat{\rho}_{t}^{(n)} \xrightarrow{n \rightarrow \infty} \rho_{t} .
$$

- $t \mapsto \rho_{t}$ is the gradient flow of $R: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ on the Wasserstein space $\left(\mathcal{P}_{2}(\mathbb{R}), \mathbb{W}_{2}\right)$

$$
\partial_{t} \rho_{t}=-\nabla_{\mathbb{W}_{2}}(R+\operatorname{Ent})\left(\rho_{t}\right)
$$

Particle gradient flow/diffusion

Objective: $R_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\mathrm{d} X_{i}(t)=-n \partial_{i} R_{n}(X(t)) \mathrm{d} t+\mathrm{d} B_{i}(t)
$$

Wasserstein gradient flow

Objective: $R: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}$
$\partial_{t} \rho_{t}=-\nabla_{\mathbb{W}_{2}}(R+\operatorname{Ent})\left(\rho_{t}\right)$

Particle gradient flow/diffusion

Objective: $R_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\mathrm{d} X_{i}(t)=-n \partial_{i} R_{n}(X(t)) \mathrm{d} t+\mathrm{d} B_{i}(t)
$$

Wasserstein gradient flow

Objective: $R: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}$
$\partial_{t} \rho_{t}=-\nabla_{\mathbb{W}_{2}}(R+\operatorname{Ent})\left(\rho_{t}\right)$

Meta Theorem(s)

- Particle system gradient descent approximates the Wasserstein gradient flow of measures

Particle gradient flow/diffusion

Objective: $R_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\mathrm{d} X_{i}(t)=-n \partial_{i} R_{n}(X(t)) \mathrm{d} t+\mathrm{d} B_{i}(t)
$$

Wasserstein gradient flow

Objective: $R: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}$
$\partial_{t} \rho_{t}=-\nabla_{\mathbb{W}_{2}}(R+\operatorname{Ent})\left(\rho_{t}\right)$

Meta Theorem(s)

- Particle system gradient descent approximates the Wasserstein gradient flow of measures

$$
\rho_{t} \approx n^{-1} \sum_{i=1}^{n} \delta_{X_{i}(t)}
$$

Particle gradient flow/diffusion

Objective: $R_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\mathrm{d} X_{i}(t)=-n \partial_{i} R_{n}(X(t)) \mathrm{d} t+\mathrm{d} B_{i}(t)
$$

Wasserstein gradient flow

Objective: $R: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}$
$\partial_{t} \rho_{t}=-\nabla_{\mathbb{W}_{2}}(R+\operatorname{Ent})\left(\rho_{t}\right)$

Meta Theorem(s)

- Particle system gradient descent approximates the Wasserstein gradient flow of measures

$$
\rho_{t} \approx n^{-1} \sum_{i=1}^{n} \delta_{X_{i}(t)}
$$

- Propagation of Chaos: As n grows, any k randomly chosen particles become independent.

Particle gradient flow/diffusion

Objective: $R_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\mathrm{d} X_{i}(t)=-n \partial_{i} R_{n}(X(t)) \mathrm{d} t+\mathrm{d} B_{i}(t)
$$

Wasserstein gradient flow
Objective: $R: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}$
$\partial_{t} \rho_{t}=-\nabla_{\mathbb{W}_{2}}(R+\operatorname{Ent})\left(\rho_{t}\right)$

Meta Theorem(s)

- Particle system gradient descent approximates the Wasserstein gradient flow of measures

$$
\rho_{t} \approx n^{-1} \sum_{i=1}^{n} \delta_{X_{i}(t)} .
$$

- Propagation of Chaos: As n grows, any k randomly chosen particles become independent.
- The dynamics of a randomly chosen particle in is described by McKean-Vlasov equation

$$
\mathrm{d} X(t)=b\left(X(t), \mu_{t}\right) \mathrm{d} t+\mathrm{d} B_{t}, \quad \mu_{t}=\operatorname{Law}\left(X_{t}\right)
$$

An application: Two layer Neural Networks (NNs)

$$
\begin{aligned}
\Theta & =\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right\} \\
\hat{y}_{\Theta}\left(x_{0}\right) & =\frac{1}{n} \sum_{i=1}^{n} \sigma\left(\left\langle\theta_{i}, x_{0}\right\rangle\right), \\
R_{n}(\Theta) & =\mathbb{E}_{(X, Y) \sim \mu}\left[\left(Y-\hat{y}_{\Theta}(X)\right)^{2}\right] .
\end{aligned}
$$

An application: Two layer Neural Networks (NNs)

$$
\begin{aligned}
\Theta & =\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right\}, \\
\hat{y}_{\Theta}\left(x_{0}\right) & =\frac{1}{n} \sum_{i=1}^{n} \sigma\left(\left\langle\theta_{i}, x_{0}\right\rangle\right), \\
R_{n}(\Theta) & =\mathbb{E}_{(X, Y) \sim \mu}\left[\left(Y-\hat{y}_{\Theta}(X)\right)^{2}\right] .
\end{aligned}
$$

Minimization Problem(s):

$$
R_{n}(\Theta)=\mathbb{E}\left[Y^{2}\right]+\frac{2}{n} \sum_{i=1}^{n} V\left(\theta_{i}\right)+\frac{1}{n^{2}} \sum_{i, j=1}^{n} U\left(\theta_{i}, \theta_{j}\right)
$$

An application: Two layer Neural Networks (NNs)

Figure: A 2-layer NN.

$$
\begin{aligned}
\Theta & =\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right\}, \quad \rho_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\theta_{i}} \\
\hat{y}_{\Theta}\left(x_{0}\right) & =\frac{1}{n} \sum_{i=1}^{n} \sigma\left(\left\langle\theta_{i}, x_{0}\right\rangle\right), \quad \hat{y}\left(x_{0}\right)=\int \sigma\left(\left\langle\theta, x_{0}\right\rangle\right) \rho_{n}(\mathrm{~d} \theta),
\end{aligned}
$$

$$
R_{n}(\Theta)=\mathbb{E}_{(X, Y) \sim \mu}\left[\left(Y-\hat{y}_{\Theta}(X)\right)^{2}\right]
$$

Minimization Problem(s):

$$
\begin{aligned}
R_{n}(\Theta) & =\mathbb{E}\left[Y^{2}\right]+\frac{2}{n} \sum_{i=1}^{n} V\left(\theta_{i}\right)+\frac{1}{n^{2}} \sum_{i, j=1}^{n} U\left(\theta_{i}, \theta_{j}\right) \\
R(\rho) & :=\mathbb{E}\left[Y^{2}\right]+2 \int V(\theta) \mathrm{d} \rho(\theta)+\iint U\left(\theta_{1}, \theta_{2}\right) \mathrm{d} \rho\left(\theta_{1}\right) \mathrm{d} \rho\left(\theta_{2}\right) .
\end{aligned}
$$

Two layer NN continued...

Minimization Problem(s):

$$
\begin{aligned}
R_{n}(\Theta) & =\mathbb{E}\left[Y^{2}\right]+\frac{2}{n} \sum_{i=1}^{n} V\left(\theta_{i}\right)+\frac{1}{n^{2}} \sum_{i, j=1}^{n} U\left(\theta_{i}, \theta_{j}\right) \\
R(\rho) & :=\mathbb{E}\left[Y^{2}\right]+2 \int V(\theta) \mathrm{d} \rho(\theta)+\iint U\left(\theta_{1}, \theta_{2}\right) \mathrm{d} \rho\left(\theta_{1}\right) \mathrm{d} \rho\left(\theta_{2}\right) .
\end{aligned}
$$

- Consider SGD on R_{n} with step size τ_{n}.
- Let $\hat{\rho}_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} \delta_{\theta_{i}(t)}$, for $t=k \tau_{n}, \quad k \in \mathbb{N}$.

Two layer NN continued...

Minimization Problem(s):

$$
\begin{aligned}
R_{n}(\Theta) & =\mathbb{E}\left[Y^{2}\right]+\frac{2}{n} \sum_{i=1}^{n} V\left(\theta_{i}\right)+\frac{1}{n^{2}} \sum_{i, j=1}^{n} U\left(\theta_{i}, \theta_{j}\right) \\
R(\rho) & :=\mathbb{E}\left[Y^{2}\right]+2 \int V(\theta) \mathrm{d} \rho(\theta)+\iint U\left(\theta_{1}, \theta_{2}\right) \mathrm{d} \rho\left(\theta_{1}\right) \mathrm{d} \rho\left(\theta_{2}\right) .
\end{aligned}
$$

- Consider SGD on R_{n} with step size τ_{n}.
- Let $\hat{\rho}_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} \delta_{\theta_{i}(t)}$, for $t=k \tau_{n}, \quad k \in \mathbb{N}$.

Theorem [MMN '18]

If $\hat{\rho}_{n}(0) \xrightarrow{n \rightarrow \infty} \rho_{0}, \quad$ then $\quad \hat{\rho}_{n}(t) \xrightarrow[\substack{n \rightarrow \infty \\ \tau_{n} \rightarrow 0}]{\mathbb{W}_{2}} \rho(t), \quad$ uniformly for $t \in[0, T]$,
where $\rho: t \mapsto \rho(t)$ solves

$$
\partial_{t} \rho(t)=-\nabla_{W_{2}} R(\rho(t)), \quad \rho(0)=\rho_{0} .
$$

Two layer NN continued...

Minimization Problem(s):

$$
\begin{aligned}
R_{n}(\Theta) & =\mathbb{E}\left[Y^{2}\right]+\frac{2}{n} \sum_{i=1}^{n} V\left(\theta_{i}\right)+\frac{1}{n^{2}} \sum_{i, j=1}^{n} U\left(\theta_{i}, \theta_{j}\right) \\
R(\rho) & :=\mathbb{E}\left[Y^{2}\right]+2 \int V(\theta) \mathrm{d} \rho(\theta)+\iint U\left(\theta_{1}, \theta_{2}\right) \mathrm{d} \rho\left(\theta_{1}\right) \mathrm{d} \rho\left(\theta_{2}\right) .
\end{aligned}
$$

- Consider SGD on R_{n} with step size τ_{n}.
- Let $\hat{\rho}_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} \delta_{\theta_{i}(t)}$, for $t=k \tau_{n}, \quad k \in \mathbb{N}$.

Theorem [MMN '18]

If $\hat{\rho}_{n}(0) \xrightarrow{n \rightarrow \infty} \rho_{0}, \quad$ then $\quad \hat{\rho}_{n}(t) \xrightarrow[\substack{n \rightarrow \infty \\ \tau_{n} \rightarrow 0}]{\mathbb{W}_{2}} \rho(t), \quad$ uniformly for $t \in[0, T]$, where $\rho: t \mapsto \rho(t)$ solves

$$
\partial_{t} \rho(t)=-\nabla_{W_{2}} R(\rho(t)), \quad \rho(0)=\rho_{0} .
$$

And,

$$
\inf _{\Theta \in\left(\mathbb{R}^{d}\right)^{n}} R_{n}(\Theta) \xrightarrow{n \rightarrow \infty} \inf _{\rho \in \mathcal{P}\left(\mathbb{R}^{d}\right)} R(\rho) .
$$

A new world

Objective
Study large scale optimization problems over dense weighted unlabeled graphs.

A new world

Objective

Study large scale optimization problems over dense weighted unlabeled graphs.
Let $G=(V, E)$ be a graph and let A be an adjacency matrix of G.

Figure: Symmetry in unlabeled graphs.

Examples

- Edge density: $\quad h_{-}(G)=(\#$ of edges in $G) /\binom{n}{2}$.
- Triangle density: $h_{\triangle}(G)=(\#$ of $\triangle \mathrm{s}$ in $G) /\binom{n}{3}$.

A new world

Objective

Study large scale optimization problems over dense weighted unlabeled graphs.

Let $G=(V, E)$ be a graph and let A be an adjacency matrix of G.

Figure: Symmetry in unlabeled graphs.

Examples

- Edge density: $\quad h_{-}(G)=(\#$ of edges in $G) /\binom{n}{2}$.
- Triangle density: $h_{\triangle}(G)=(\#$ of $\triangle \mathrm{s}$ in $G) /\binom{n}{3}$.

Invariant functions

A function $F: \mathcal{M}_{n} \rightarrow \mathbb{R}$ is said to be invariant function/graph function if $F(A)=F\left(A^{\sigma}\right)$ for all permutations $\sigma \in S_{n}$ and $A \in \mathcal{M}_{n}$, where $A^{\sigma}(i, j)=A(\sigma(i), \sigma(j))$.

General plan and analogies

Let F be graph function. Our goal is to minimize F over large graphs.
Can perform gradient descent on finite graphs/symmetric matrices.

Exploiting the symmetry

- Think of the problem as an optimization problem on the space of 'graphons'.
- Hope-Pray-Prove! The gradient descent process on finite graphs/symmetric matrices converge to a limit as $n \rightarrow \infty$.

General plan and analogies

Let F be graph function. Our goal is to minimize F over large graphs.
Can perform gradient descent on finite graphs/symmetric matrices.

Exploiting the symmetry

- Think of the problem as an optimization problem on the space of 'graphons'.
- Hope-Pray-Prove! The gradient descent process on finite graphs/symmetric matrices converge to a limit as $n \rightarrow \infty$.
- Can we show that the limit of GD is a gradient flow on graphons?

Let F be graph function. Our goal is to minimize F over large graphs.
Can perform gradient descent on finite graphs/symmetric matrices.

Exploiting the symmetry

- Think of the problem as an optimization problem on the space of 'graphons'.
- Hope-Pray-Prove! The gradient descent process on finite graphs/symmetric matrices converge to a limit as $n \rightarrow \infty$.
- Can we show that the limit of GD is a gradient flow on graphons?

Graphons vs Wasserstein space

- Given a graph on n vertices is akin to particle ensemble
- Think of every edge as a particle and edge-weights are evolving

Setup and Results

Graphons

Kernels \mathcal{W}

A kernel is a measurable function $W:[0,1]^{2} \rightarrow[-1,1]$ such that $W(x, y)=W(y, x)$.

- Adjacency matrix \equiv kernel.

$$
\frac{1}{16}\left[\begin{array}{cccc}
-16 & -15 & -12 & -7 \\
-15 & -14 & -11 & 1 \\
-12 & -11 & -6 & 4 \\
-7 & 1 & 4 & 9
\end{array}\right]
$$

Symmetric matrix A

Kernel representation of A

Graphons

Kernels \mathcal{W}

A kernel is a measurable function $W:[0,1]^{2} \rightarrow[-1,1]$ such that $W(x, y)=W(y, x)$.

- Adjacency matrix \equiv kernel.

$$
\frac{1}{16}\left[\begin{array}{cccc}
-16 & -15 & -12 & -7 \\
-15 & -14 & -11 & 1 \\
-12 & -11 & -6 & 4 \\
-7 & 1 & 4 & 9
\end{array}\right]
$$

Symmetric matrix A

Kernel representation of A

- Identify adjacency matrix/kernel up to 'permutations'.
- Identify $W_{1} \cong W_{2}$ if one can be obtained by 'relabeling' the vertices of the other, i.e.,

$$
W_{1}(\varphi(x), \varphi(y))=W_{2}(x, y), \quad x, y \in[0,1] .
$$

Graphons

Graphons $\widehat{\mathcal{W}}$ (Lovász \& Szegedy, 2006): $\widehat{\mathcal{W}}:=\mathcal{W} / \cong$

Cut metric :: Weak convergence

- Cut metric, δ_{\square}, metrizes graph convergence.
- $\left(\widehat{\mathcal{W}}, \delta_{\square}\right)$ is compact.

[^0]
Graphons

Graphons $\widehat{\mathcal{W}}$ (Lovász \& Szegedy, 2006): $\widehat{\mathcal{W}}:=\mathcal{W} / \cong$

Cut metric :: Weak convergence

- Cut metric, δ_{\square}, metrizes graph convergence.
- $\left(\widehat{\mathcal{W}}, \delta_{\square}\right)$ is compact.

Invariant L^{2} metric $\delta_{2}:: 2$-Wasserstein metric \mathbb{W}_{2}

- Stronger than the cut metric (i.e., δ_{\square} convergence $\nRightarrow \delta_{2}$ convergence).
- Gromov-Wasserstein distance between ([0, 1], Leb, W_{1}) and ($[0,1]$, Leb, W_{2}).

[^1]
Graphons

Graphons $\widehat{\mathcal{W}}$ (Lovász \& Szegedy, 2006): $\widehat{\mathcal{W}}:=\mathcal{W} / \cong$

Cut metric :: Weak convergence

- Cut metric, δ_{\square}, metrizes graph convergence.
- $\left(\widehat{\mathcal{W}}, \delta_{\square}\right)$ is compact.

Invariant L^{2} metric $\delta_{2}:: 2$-Wasserstein metric \mathbb{W}_{2}

- Stronger than the cut metric (i.e., δ_{\square} convergence $\nRightarrow \delta_{2}$ convergence).
- Gromov-Wasserstein distance between ([0, 1], Leb, W_{1}) and ($[0,1]$, Leb, W_{2}).

We show ${ }^{1}$

- The metric δ_{2} is geodesic (just like $\left.\mathbb{W}_{2}\right)$. Geodesic convexity on $\left(\widehat{\mathcal{W}}, \delta_{2}\right)$.
- Notion of 'gradient' on ($\widehat{\mathcal{W}}, \delta_{2}$) called 'Frechét-like derivative'!
- Construction of 'gradient flows' on $\left(\widehat{\mathcal{W}}, \delta_{2}\right)^{2}$.

[^2]Existence of gradient flow on Graphons

Theorem [OPST '21]

If $R: \widehat{\mathcal{W}} \rightarrow \mathbb{R}$

- has a Fréchet-like derivative,
- is geodesically semiconvex in δ_{2}, then starting from any $W_{0} \in \widehat{\mathcal{W}}, \exists$! gradient flow curve $\left(W_{t}\right)_{t \in \mathbb{R}_{+}}$for R

Existence of gradient flow on Graphons

Theorem [OPST '21]

If $R: \widehat{\mathcal{W}} \rightarrow \mathbb{R}$

- has a Fréchet-like derivative,
- is geodesically semiconvex in δ_{2},
then starting from any $W_{0} \in \widehat{\mathcal{W}}, \exists$! gradient flow curve $\left(W_{t}\right)_{t \in \mathbb{R}_{+}}$for R satisfying

$$
W_{t}:=W_{0}-\int_{0}^{t} D R\left(W_{s}\right) \mathrm{d} s, \quad t \in \mathbb{R}_{+},
$$

inside $\widehat{\mathcal{W}}$. At the boundary $\{-1,1\}$ of $\widehat{\mathcal{W}}$, add constraints to contain it.

Scaling limits of GD [OPST ' $21+$ HOPST '22]

Euclidean GD/SGD of R_{n} over $n \times n$ symmetric matrices, converges to the 'gradient flow' of R on the metric space of graphons.

Scaling limit of Noisy SGD

For $n \in \mathbb{N}$, let $\quad R_{n}(A)=\mathbb{E}_{\xi}\left[\ell_{n}(A ; \xi)\right] \quad$ for $A \in \mathcal{M}_{n}$.

SGD

Given the k-th iterate $W_{k}^{(n)} \in \mathcal{M}_{n}$, sample ξ,

$$
W_{k+1}^{(n)}=W_{k}^{(n)}-\tau_{n} \cdot n^{2} \underbrace{\nabla \ell_{n}\left(W_{k}^{(n)} ; \xi\right)}_{\substack{\text { stochastic Euclidean } \\ \text { gradient }}}
$$

Scaling limit of Noisy SGD

For $n \in \mathbb{N}$, let $\quad R_{n}(A)=\mathbb{E}_{\xi}\left[\ell_{n}(A ; \xi)\right] \quad$ for $A \in \mathcal{M}_{n}$.

Noisy SGD

Given the k-th iterate $W_{k}^{(n)} \in \mathcal{M}_{n}$, sample ξ,

$$
W_{k+1}^{(n)}=W_{k}^{(n)}-\tau_{n} \cdot n^{2} \underbrace{\nabla \ell_{n}\left(W_{k}^{(n)} ; \xi\right)}_{\begin{array}{c}
\text { stochastic Euclidean } \\
\text { gradient }
\end{array}}+\tau_{n}^{1 / 2} \cdot \underbrace{N(0, \mathrm{id)}}_{\text {added noise }}
$$

Scaling limit of Noisy SGD

For $n \in \mathbb{N}$, let $\quad R_{n}(A)=\mathbb{E}_{\xi}\left[\ell_{n}(A ; \xi)\right] \quad$ for $A \in \mathcal{M}_{n}$.

Noisy SGD

Given the k-th iterate $W_{k}^{(n)} \in \mathcal{M}_{n}$, sample ξ,

$$
W_{k+1}^{(n)}=P(W_{k}^{(n)}-\tau_{n} \cdot n^{2} \underbrace{\nabla \ell_{n}\left(W_{k}^{(n)} ; \xi\right)}_{\begin{array}{c}
\text { stochastic Euclidean } \\
\text { gradient }
\end{array}}+\tau_{n}^{1 / 2} \cdot \underbrace{N(0, \text { id })}_{\text {added noise }})
$$

Scaling limit of Noisy SGD

For $n \in \mathbb{N}$, let $\quad R_{n}(A)=\mathbb{E}_{\xi}\left[\ell_{n}(A ; \xi)\right] \quad$ for $A \in \mathcal{M}_{n}$.

Noisy SGD

Given the k-th iterate $W_{k}^{(n)} \in \mathcal{M}_{n}$, sample ξ,

$$
W_{k+1}^{(n)}=P(W_{k}^{(n)}-\tau_{n} \cdot n^{2} \underbrace{\nabla \ell_{n}\left(W_{k}^{(n)} ; \xi\right)}_{\begin{array}{c}
\text { stochastic Euclidean } \\
\text { gradient }
\end{array}}+\tau_{n}^{1 / 2} \cdot \underbrace{N(0, \text { id })}_{\text {added noise }})
$$

If $W_{0}^{(n)} \xrightarrow{\delta_{2}} W_{0}$, and $\tau_{n} \rightarrow 0$, as $n \rightarrow \infty$, then a.s.

$$
W^{(n)} \stackrel{\delta \square}{\rightrightarrows} \Gamma, \quad \text { as } n \rightarrow \infty,
$$

where $\Gamma: t \mapsto \Gamma(t)$ is the curve described by the McKean-Vlasov equation.

McKean-Vlasov equation

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a Brownian Motion $B(t)$, and $(U, V) \stackrel{\text { i.i.d. }}{\sim} \operatorname{Uni}[0,1]$.
- Consider the process $(X(t), \Gamma(t))$ such that

McKean-Vlasov equation

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a Brownian Motion $B(t)$, and $(U, V) \stackrel{\text { i.i.d. }}{\sim} \operatorname{Uni}[0,1]$.
- Consider the process $(X(t), \Gamma(t))$ such that on $\{U=u, V=v\}$,

$$
\begin{aligned}
\mathrm{d} X(t) & =-(D R)(\Gamma(t))(u, v) \mathrm{d} t+\mathrm{d} B(t) \underbrace{+\mathrm{d} L^{-}(t)-\mathrm{d} L^{+}(t)}_{\text {constrain in }[-1,1]}, \\
\Gamma(t)(x, y) & =\mathbb{E}[X(t) \mid(U, V)=(x, y)], \quad \forall(x, y) \in[0,1]^{2} .
\end{aligned}
$$

McKean-Vlasov equation

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a Brownian Motion $B(t)$, and $(U, V) \stackrel{\text { i.i.d. }}{\sim} \operatorname{Uni}[0,1]$.
- Consider the process $(X(t), \Gamma(t))$ such that on $\{U=u, V=v\}$,

$$
\begin{aligned}
\mathrm{d} X(t) & =-(D R)(\Gamma(t))(u, v) \mathrm{d} t+\mathrm{d} B(t) \underbrace{+\mathrm{d} L^{-}(t)-\mathrm{d} L^{+}(t)}_{\text {constrain in }[-1,1]}, \\
\Gamma(t)(x, y) & =\mathbb{E}[X(t) \mid(U, V)=(x, y)], \quad \forall(x, y) \in[0,1]^{2} .
\end{aligned}
$$

Expected to arise as limit of large number of graph dynamics:

- "Mean-field interaction": For any edge-weight, the effect of all others edge-weights on its evolution is invariant under vertex relabeling.
- "Propagation of chaos": Every edge-weight between a set of m randomly chosen vertices evolves independently in the limit.

Future directions

- Stronger but natural topology? Measure-valued graphons? In progress.
- Extension to Deep NNs. Use a graphon for each layer (bipartite graph), respecting all joint layerwise permutation symmetries - In progress.

Figure: A b-layer NN.

- How does data distribution propagate across depth? Control theory, optimal transport Open.

Propagation of Chaos experiments

- SGD training of a 5 layer deep feedforward ReLU networks.

$$
\sigma: x \mapsto \max \{0, x\} .
$$

- Test joint independence of elements in random 2×2 submatrices.
- Null hypothesis: All the 4 random variables are jointly independent.

(a) Dataset: CIFAR10. x-axis: $n, \quad y$-axis: p-value with interquartile range.
- For small $n(\lesssim 300)$: The p value is $<0.05 \Longrightarrow$ reject null hypothesis.
- Monotonic increase in p value as n increases, in all layers.

Thank you!

> Thank you!
> ArXiv version ${ }^{3}$: https://arxiv.org/abs/2210.00422
${ }^{3}$ Stochastic optimization on matrices and a graphon McKean-Vlasov limit - Harchaoui, Oh, Pal, Somani, Tripathi, 2022

[^0]: ${ }^{1}$ Gradient flows on graphons - Oh, Pal, Somani, Tripathi, 2021
 ${ }^{2}$ Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré, 2008

[^1]: ${ }^{1}$ Gradient flows on graphons - Oh, Pal, Somani, Tripathi, 2021
 ${ }^{2}$ Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré, 2008

[^2]: ${ }^{1}$ Gradient flows on graphons - Oh, Pal, Somani, Tripathi, 2021
 ${ }^{2}$ Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré, 2008

