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Random Matrix Theory

A random matrix (ensemble) AN = (AN(i , j))1≤ij≤N , where
AN(i , j) ∼ some distribution.

Examples

Let BN(i , j) = ±1 with probability 1/2.

Let Xi ,j ∼ CN (0, 1) be i.i.d. Set AN = (Xi ,j)1≤i ,j≤N .

Let GN = 1√
2

(AN + A∗N). (GUE)

Adjacency and Laplacian of Random Graphs

Questions?

Matrix Norm

Determinant

Joint Density of Eigenvalues/singular-values

Eigenvectors and so on.
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Definitions, Notations and Plan!

For a matrix A with eigenvalues λ1, . . . , λN , the empirical
spectral distribution, ESD(A), is the probability measure
defined as

ESD(A) :=
1

N

∑
i

δλi .

For λ = (λ1, . . . , λN), we denote the Vandermonde
determinant by ∆(λ) =

∏
i<j |λi − λj |.

Questions!

(Global Question) Limiting Behaviour of ESD of a
(normalized) random matrix ensemble.

(Local Question) Local statistics of eigenvalues, for instance,
the spacing between consecutive eigenvalues!
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In the beginning...

Wishart Ensemble

Let X = XN,M ,N ≤ M be a matrix with i.i.d. complex
Gaussian entries. Let WN = XX ∗.

Let λ1, . . . , λN be the eigenvalues of WN .

The Generalized Product Moment Distribution in Samples from
Normal Multivariate Population, John Wishart, 1928.

f (λ1, . . . , λN) ∼ ∆(λ)2
∏
i

λm−ni e−λi ,

where ∆(λ) =
∏

i<j |λi − λj |.
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continued...

Wigner’s semicircular law

Let AN be a GUE matrix i.e. AN(i , j) ∼ CN(0, 1), i < j and
AN(i , i) ∼ N(0, 1).

On the distribution of roots of certain symmetric matrices, Wigner,
1957

ESD AN√
N

=⇒ µsc ,

where dµsc
dx = 1

2π

√
(4− x2)+.

Wigner first proved the result for sign matrices.

Wigner used the method of moments.

(Universality Principle) The limiting ESD should be
independent of the distribution of entries.
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Ginibre Formula

Statistical Ensembles of Complex, Quaternion, and Real Matrices,
Jean Ginibre, 1965

Let AN be symmetric/Hermitian matrix with i.i.d. (real/complex)
Gaussian entries. Let λ1, . . . , λN be the eigenvalues of AN , then
the joint density of eigenvalues is

∝ ∆(λ)β exp(−β
∑
i

|λi |2/2),

where β = 1 in real case and β = 2 in complex case.

The same formula (with β = 2) holds if the entries are
complex Gaussian but the matrix is not necessarily Hermitian.

Circular Law for non-Hermitian, complex Gaussian matrix with
i.i.d. entries.

Random matrices: universality of ESDs and the circular law,
T. Tao, V. Vu, 2010.
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Eigenvalue distributions of large Hermitian matrices; Wigners semicircle law and a

theorem of Kac, Murdock, and Szegö., Trotter, 1984

If U is unitary and AN is GUE, then U∗ANU =d AN .

(Tridigonalizing) AN has the same distribution as

T2,N =



N(0, 1) 1√
2
χ2(n−1) 0 . . . 0

1√
2
χ2(n−1) N(0, 1) 1√

2
χ2(n−2) . . . 0

0 1√
2
χ2(n−2) N(0, 1)

. . .
...

...
. . .

. . . 1√
2
χ2

0 1√
2
χ2 N(0, 1)


.

Trotter used the tridigonal form to compute the joint density of
eigenvalues of GUE as well as the limiting ESD.
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Matrix Models for Beta Ensembles, Dumitriu and Edelman, 2002

Tβ,N =



N 1√
β
χβ(n−1) 0 . . . 0

1√
β
χβ(n−1) N 1√

β
χβ(n−2) . . . 0

0 1√
2
χβ(n−2) N

. . .
...

...
. . .

. . . 1√
2
χβ

0 1√
β
χβ N


.

Joint density of the eigenvalues of 1√
N
Tβ,N is

fβ,N =∝ ∆(λ)β exp

(
−βN

∑
i

λ2i
2

)
.

In subsequent work by various authors the semicircle law was
established for the ESD of 1√

N
Tβ,N .
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General β−Ensemble

A β-ensemble is a probability measure, dPV
N,β, on Rn with

density

∝
∏
i<j

|λi − λj |β exp

(
−βN

∑
i

(V (λi ))

)
.

(Dumitriu-Edelman) PV
N,β for β > 0, and V (x) = x2/2, is the

eigenvalue density of 1√
N
Tβ,N .

For β = 1, 2, 4, there are matrix models with
symmetric/Hermitian/symplectic matrices whose eigenvalue
density is given by PV

N,β.

(Krishnapur, Rider, Virag 2013) There is a tridigonal matrix
model–with dependent entries–that realizes the general
β-ensemble as the eigenvalue density.

Raghavendra Tripathi Random Matrices, β−ensembles, and Universality



General β−Ensemble

A β-ensemble is a probability measure, dPV
N,β, on Rn with

density

∝
∏
i<j

|λi − λj |β exp

(
−βN

∑
i

(V (λi ))

)
.

(Dumitriu-Edelman) PV
N,β for β > 0, and V (x) = x2/2, is the

eigenvalue density of 1√
N
Tβ,N .

For β = 1, 2, 4, there are matrix models with
symmetric/Hermitian/symplectic matrices whose eigenvalue
density is given by PV

N,β.

(Krishnapur, Rider, Virag 2013) There is a tridigonal matrix
model–with dependent entries–that realizes the general
β-ensemble as the eigenvalue density.

Raghavendra Tripathi Random Matrices, β−ensembles, and Universality



General β−Ensemble

A β-ensemble is a probability measure, dPV
N,β, on Rn with

density

∝
∏
i<j

|λi − λj |β exp

(
−βN

∑
i

(V (λi ))

)
.

(Dumitriu-Edelman) PV
N,β for β > 0, and V (x) = x2/2, is the

eigenvalue density of 1√
N
Tβ,N .

For β = 1, 2, 4, there are matrix models with
symmetric/Hermitian/symplectic matrices whose eigenvalue
density is given by PV

N,β.

(Krishnapur, Rider, Virag 2013) There is a tridigonal matrix
model–with dependent entries–that realizes the general
β-ensemble as the eigenvalue density.

Raghavendra Tripathi Random Matrices, β−ensembles, and Universality



β-ensemble continued

Spectral measure for β-ensemble converges to a compactly
supported measure µV , called equilibrium measure.

For uniformly convex V , the equilibrium measure has the form
dµ
dx = S(x)

√
(b − x)(x − a)+ with S(x) ≥ c > 0 on [a, b].

Recall Wigner’s semicircle law: The ESD converges to the
semicircular law with density 1

2π

√
4− x2.

Finer Questions: Fluctuations

The largest eigenvalue of GUE is close to 2. How does it
fluctuate around 2?

What is the correct scale of fluctuation?

How does the largest particle under β-ensemble fluctuate
around the edge of µV ?

What does spacing between two particles look like?
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Edge Universality!

|{j : λj ≥ 2− ε}| ≈ N

∫ 2

2−ε
dµsc(x) ≈ cNε3/2.

To get O(1) number of particles near 2, we should zoom at
N−2/3.

There are local semicircle law that makes this heuristic
rigorous.

Level spacing distributions and the Airy kernel, 1994, Tracy, Widom

lim
N→∞

P(λN ≥ 2 +
x

N2/3
) = F2(x).

Universality!

Fluctuation of the largest particle under β-ensemble follows
Tracy-Widom distribution!
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(Incomplete) History at the Edge!

Tracy-Widom (1994) discovered Tracy-Widom distribution for
the fluctuation of largest eigenvalue of random Hermitian
matrix.

Soshnikov (1999) proved Tracy-Widom law for general Wigner
matrices assuming symmetric distributions.

Tao-Vu (2010) with 4-moment assmuption

Krishnapur, Rider, Virag (2013) For β ≥ 0,V convex.

Bourgade, Erdös, Yau (2014) β ≥ 1,V ∈ C 4.

Shcherbina, β > 0,V analytic (multi-cut case included).

Bekerman, Figalli, Guionnet (2015) β > 0,V non-critical.
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Bulk Universality

In the ’bulk of the spectrum’, typical spacing is N−1, that is,
λi+1 − λi ≈ 1/N.

Fix u ∈ (−2, 2). Given x , y ∈ R, we ask what is the
Probability that there is an eigenvalue at u + x

Nµsc (u)
and an

eigenvalue at u + y
Nµsc (u)

?

More generally, we want to understand the distribution of
N(λi+1 − λi ).
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Bulk Universality

Gaudin-Mehta

P

(
no eigenvalues in [u +

x

Nµsc(u)
, u +

y

Nµsc(u)
]

)
→ 1−

(
sin(x − y)

x − y

)2

.

More generally, the N(λi − λi+k1), . . . ,N(λi+kn − λi+kn−1) has
correlation kernel given by sine-kernel law.

For β > 0, and V (x) = x2/2, these correlation have explicit
description in terms of Stochastic Operators.

Universality in this context means that for a fixed β > 0, the
correlations are independent of V .
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Universality in Bulk

∫
f (N(λi+1 − λi ))dPV

N,β =

∫
f (N(λi+1 − λi ))dPG

N,β + oN(1),

where G (x) = x2/2.

Universality at edge

∫
f (N2/3(λN − bV ))dPV

N,β =

∫
f (N2/3(λN − 2))dPG

n,β + oN(1).

where G (x) = x2/2.
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Transportation Approach to Universality!

Transport Maps for β-matrix models and Universality, 2015, Bekerman,
Figalli, Guionnet

Construct a transport map TN]P
V
β,N ≈ PG

β,N .

Taylor expansion of T i
N = T0(λi ) + 1

NX
i
N(λ) + 1

N2Y
i
N(λ).

Good Estimates on norms of the maps T0,X
i
N ,Y

i
N .

Theorem 1.5 (Universality)

Let V be smooth and let G (x) = x2/2. For any Lipschitz function
f : R→ R with support in [−M,M], we have∣∣∣∣∫ f (N2/3T ′0(2)(λN − 2))dPG

N −
∫

f (N2/3(λN − aV ))dPV
N

∣∣∣∣ ≤ C
(logN)3

N1/3
.
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Thank You!
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